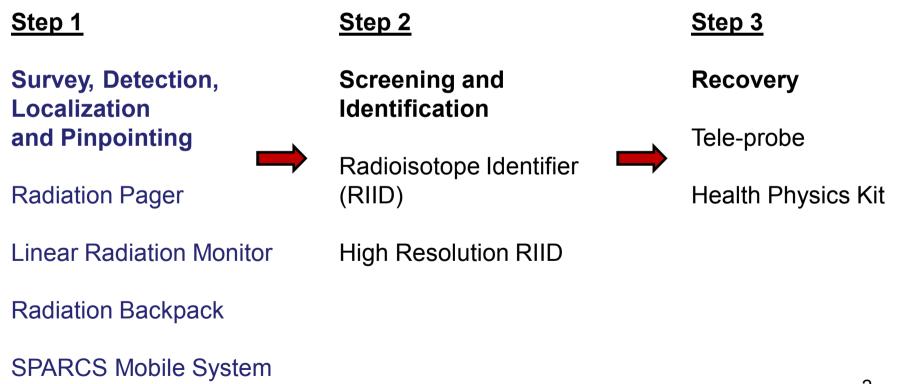


Radiation Detection Instrumentation



Three Step Process for Radiological Response

Detection, identification and recovery of a radiation source

Radiation Pager

Personal Radiation Detector (PRD) primarily for routine monitoring, detection, localization and pinpointing radioactive materials

Radiation Pager Display

Primarily a search tool (i.e. not a dosimeter for safety)

LED display shows alarm level. Two modes - audio and vibration

Alarm levels (0-9):

Less than 9 = safe (9 or greater move away and report)

Update button resets background to current level extending range of unit

Alarm Level vs Dose Rate		
0 = bkg	0.01 μSv/h	
1 = 2x bkg	0.02 μSv/h	
2 = 4x bkg	0.04 μSv/h	
3 = 8x bkg	0.08 μSv/h	
4 = 16x bkg	0.16 μSv/h	
8 = 256x bkg	2.56 μSv/h	
9 = 512x bkg	5.12 μSv/h	

4

Linear Radiation Monitor (LRM)

80 foot cable with gamma sensors for portal monitoring or bundled for high sensitivity backpack search tool

LRM Monitor Alarm Display

Bar chart showing the relative count rates in the 18 individual gamma detectors

In the backpack mode, all 18 detectors are summed together to make one large, high sensitivity detector

Backpack Radiation Detector

Dual gamma and neutron detector for survey/search of radioactive materials, high sensitivity portable system

30 times more sensitive than pager or RIID

Backpack Radiation Detector Alarm Display

Smart phone showing the gamma and neutron strip charts, count rates and alarm levels

The visual strip chart can be used to monitor the highest count rate which is a direct indication of the closest approach to either a gamma or neutron radiation source

Alarm levels are based on the number of standard deviations above the background count rate

System Start-Up and Alarm Voice Messages

Infield Search System XXX (serial number), collecting background, please wait

The unit will turn on the detector high voltages, stabile electronics and collect a 120 second background (total set up time < 3 minutes).

Background complete, normal search mode

System starts up in Dynamic Mode and ready for search operations.

Alarms

Golf 4, 5, 6..... (for gamma) November 4, 5, 6..... (for neutron)

Operator Switch and Voice Messages

Press 1 second – system check, status ok

Press 3 seconds – background update

There are two modes of operation (Dynamic Mode with 3 seconds collection time and Delta Rate Mode with 0.5 second collection time)

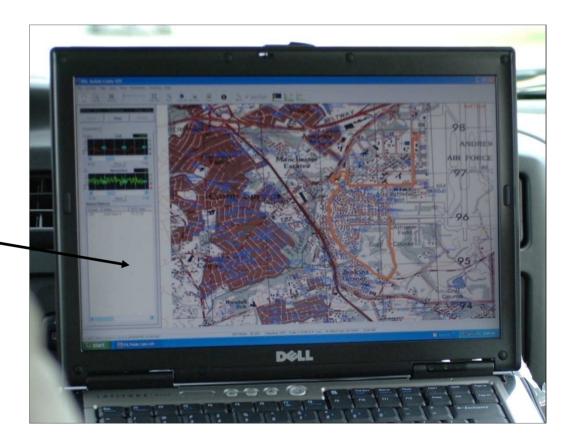
Press >5 seconds – switch to Delta Rate Mode (Locate Mode)

Press >5 seconds a second time to return to Dynamic Mode (Normal Search Mode)

SPARCS

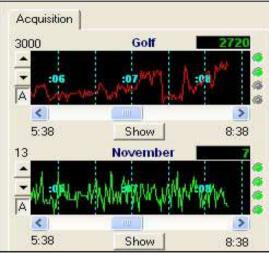
SPectral Advanced Radiological Computer System

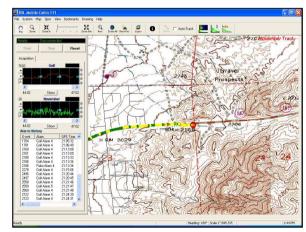
Modular, readily deployable system for gamma detection at temporary portals such as border crossings. Data is correlated with GPS coordinates. Rapidly installed in vehicles, boats or aircraft.



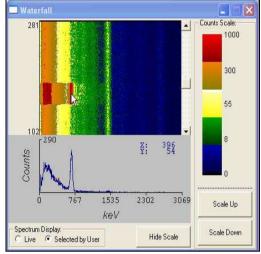
SPARCS Laptop Display

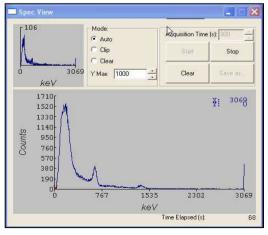
Graphical display showing GPS map overlay, alarm levels and count rate strip charts


Real time identification of common radioisotopes, spectral acquisition and email to experts for advice



Display Options




Strip Charts

Street Map/Aerial Photo Overlay

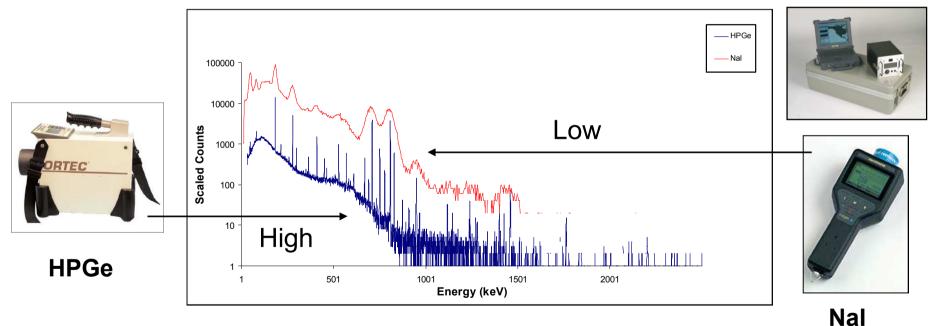
Waterfall Chart

Gamma Spectrum

Three Step Process for Radiological Response

Detection, identification and recovery of a radiation source

<u>Step 1</u>	<u>Step 2</u>	<u>Step 3</u>
Survey, Detection, Localization	Screening and Identification	Recovery
and Pinpointing		Tele-probe
Radiation Pager	Radioisotope Identifier (RIID)	Health Physics Kit
Linear Radiation Monitor	High Resolution RIID	
Radiation Backpack		
SPARCS Mobile System		



Radioactive Material Identification

High Resolution versus Low Resolution Gamma Spectroscopy

"ability to resolve adjacent gamma peaks"

Comparison of a sodium iodide spectrum (low resolution) to a high purity germanium spectrum (high resolution)

Radiolsotope IDentifier (RIID)

Low resolution sodium iodide gamma detector for initial *screening* of radioactive materials, small neutron detector

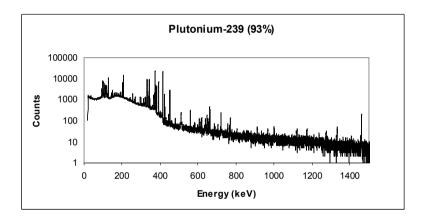
Radioisotope Identifier Display

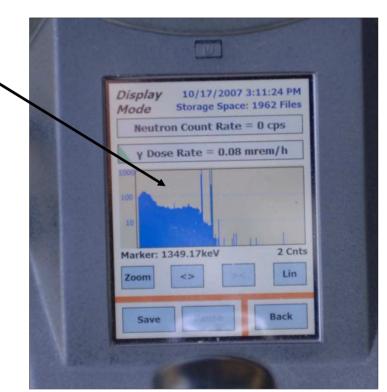
Display showing preliminary isotope identification

Screening with a RIID is the first step to identifying the radiation source and includes comparing results with cargo manifest and consulting experts for guidance

Radionuclide Identification (High Resolution RIID)

High resolution High Purity Germanium gamma detector *for laboratory quality spectroscopy in the field* and accurate radioactive material identification




Radionuclide ID Display

Display showing gamma spectrum and count rates

Every radioisotope has a unique spectral fingerprint

Three Step Process

Phased Approach

Radiation Search

Wide Area Search

RIAGE

Radiological Analysis for First Responders

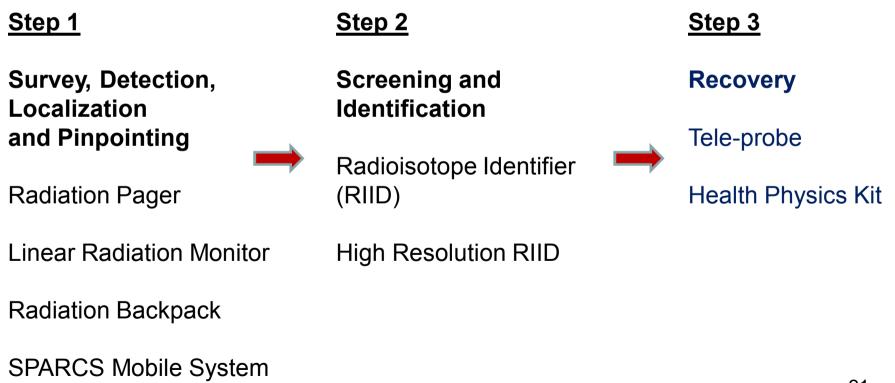
Data Analysis

Small Area Search

Localization/Pinpointing

Radioisotope Identification

Identification


Screening

Three Step Process for Radiological Response

Detection, identification and recovery of a radiation source

Tele-Probe Detector

Extendable long probe for measuring dose rates

FH-40 Tele-probe

Extendible up to 4 meters

Detectors

Proportional tube (internal) Can be used with several probes

Unit Dimensions

0.4 kg 20 cm L x 7 cm W x 4 cm H

Uses

Measure dose rates

Health Physics Kit

Calibrated instrument for measuring dose and contamination

Internal Geiger-Muller detectors

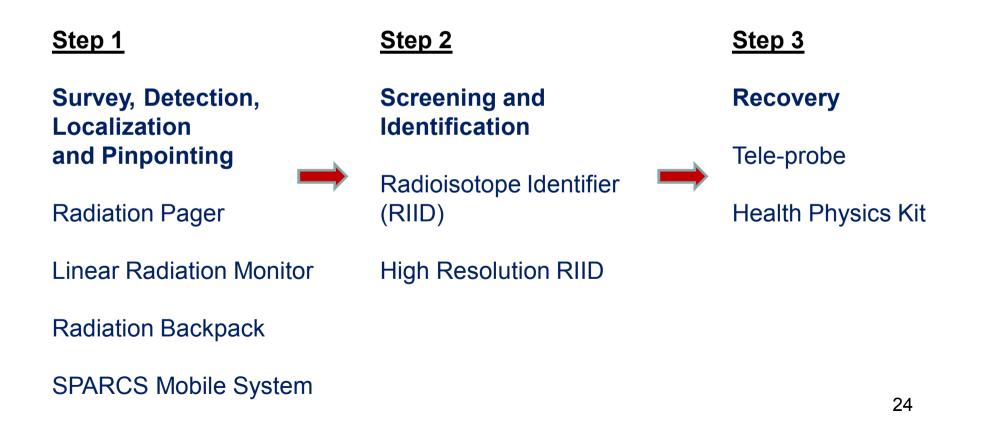
Two separate detectors Low dose and high dose Beta window on low range detector

Pancake probe (beta/gamma)

Geiger-Muller detector

Alpha probe

Zinc sulfide scintillation detector Mylar window 100 cm² surface



Three Step Process for Radiological Operations

Detection, identification and recovery of a radiation source

Questions?

Detection, Identification, Recovery