1 <u>elisse</u>

LEARNING OBJECTIVE

- List the major hazard classes and the most common material associated with each class.
- Describe the general hazards associated with each class.

Introduction

Able to identify the different & classification types of Hazmat classes

Understand the hazards posed by each hazmat classes substances

Conclusion

INTRODUCTION

What is HAZMAT?

HAZ – hazardous

MAT – materials

Substances that have the potential to harm living tissues, damage property and pollute the environment

UN CLASSIFICATION OF HAZMAT

Emergency Information Panel

Emergency Information Panel

UN Identification Number

- Uniformity in recognizing hazmat in international transport
- Assists responder in identification and establishing initial protective actions
- Four digit number assigned to each hazmat
 - May appear on placards, EIP, labels

THE 9 HAZARD CLASSES

- Class 1 : Explosives
- Class 2 : Gases
- Class 3 : Flammable Liquids
- Class 4 : Flammable Solids
- Class 5 : Oxidizing Agents
- Class 6 : Toxic & Infectious Substances
- Class 7 : Radioactive Substances
- Class 8 : Corrosive Substances
- Class 9 : Miscellaneous

CLASS I EXPLOSIVES

<u>General</u>

A chemical substance that in itself can react to produce a gas at a relatively high temperature and pressure and at such a speed as to damage the surroundings.

<u>Class 1 is sub-divided into 6 classes:</u>

- 1.1 Explosives with a mass explosion hazard.
- 1.2 Explosives with a blast/projection hazard.
- 1.3 Explosives with a minor blast hazard. (rocket propellant,

display fireworks

1.4 — Explosives with a major fire hazard.
 (consumer fireworks, ammunition

1.5 – Blasting agents.

1.6 — Extremely insensitive explosives.

CLASS I EXPLOSIVES

<u>Hazards</u>

- Most explosives pose a big fire hazard due to the very nature of explosives.
- Danger of injuries via projectiles (E.g. shrapnel, debris etc.).
- Some explosives can cause mass explosion hazard. (E.g. Black powder, Dynamite, TNT etc.).
- Ear rupture is caused by the sound waves.

Pressure front Heat front Projectiles

Sound wave

CLASS 2 GASES

<u>General</u>

A gas is a material in a state of matter that at normal temperature and pressure tends to fill the space available (diffusion).

Class 2 is sub-divided into 3 classes:

2.1 Flammable Gases ✓ E.g. Hydrogen, Propane, Butane

2.2 Non-flammable Gases ✓ E.g. Nitrogen, Oxygen, Fluorine

2.3 Poisonous Gases ✓ E.g. Chlorine, Arsine, Carbon Monoxide

CLASS 2 GASES

Hazards

Physical storage

 Gasses are difficult to store and the methods of storing these gases pose a great hazard if not handled properly or not stored properly

Compressed

<u>General</u> Pressurised Gas phase Eg. air, acetylene

<u>Hazards</u> Projectile

Liquified

<u>General</u> Pressurised Gas/liquid phase Eg. Liquid Petroleum Gas (LPG) <u>Hazards</u> Prone to ignition Projectile

Cryogenic

<u>General</u> Very low temperatures Liquid phase Eg. ammonia, nitrogen, oxygen <u>Hazards</u> Frost bite High expansion ratio

CLASS 3 LIQUIDS

<u>General</u>

- Physical properties
 - Vapour pressure and density affects behavior of gas when the liquid evaporates.
 - \checkmark Wider flammability range \rightarrow greater danger.

<u>Hazards</u>

- Flammable/explosive situation
 - ✓ Due to its tendency to generate flammable vapour when released, an explosive situation will always arise in the event of a leak → Projectiles

Flowing fire

- Due to the physical nature of liquid to flow, any release will affect a large area causing fire to spread along drains, low-lying areas, etc.
- > Toxic, corrosive, carcinogenic
 - Some liquids can be toxic if consumed, corrosive to the skin and even cancer-causing.

CLASS 4 SOLIDS

<u>General</u>

4.1 Solids that easily ignited and difficult to extinguish eg. Magnesium

4.2 Air-reactive substances
(Spontaneously combusts in air) eg. White phosphorus

4.3 Water-reactive substances

CLASS 4 SOUDS

<u>Hazards</u>

Explosive or toxic situation
 Generation of flammable or toxic gas/vapour

Difficult to extinguish

Once a fire has been initiated, it is difficult to extinguish metal fires due to the high temperatures involved. Some metals can be so hot that application of water can result in a steam explosion due to the rapid expansion of water.

Metal dust

✓ Can cause serious complications to health if inhaled.

CLASS 5 OXIDIZER

<u>General</u>

- Substances that releases oxygen
 - Generally, oxidizers are compounds which release oxygen when they react with other substances intensifying the fire.
 - Examples of oxidizers are aluminium nitrate, fluorine, hydrogen peroxides, etc.

CLASS 5 OXIDIZER Hazards

Oxidizers are very reactive compounds & Spontaneously combustible that will burn fiercely when combining with combustible materials or intimate with ordinary combustible.

CLASS 6 POISONS

<u>General</u>

- Substances that cause death or serious health effects upon exposure through:
 - Inhalation
 - Ingestion
 - Absorption

CLASS 6 POISONS

<u>Hazards</u>

Interferes with bodily functions

- Carbon Monoxide binds to red blood cells, deprives body of oxygen
- Hydrogen Fluoride binds to calcium in bones
- Cyanides interferes with respiration

Effects of Arsenic

CLASS 7 RADIOACTIVES General

- Non-ionizing radiation radio waves, UV, infrared
- Ionizing radiation
 * E.g. Alpha par Beta particles Gamma rays

CLASS 7 RADIOACTIVES

<u>Hazards</u>

- Radiation sickness
 Nausea
 Vomiting
 Diarrhea
 Exhaustion
 Haemorrhage
 Radiation injury
 Burns
 Radiation poisoning
 - Cancer

Chernobyl global radiation patterns

CLASS 8 CORRISIVES

<u>General</u>

- Substances that can cause visible destruction to tissue
 - Acids
 - Bases
- Most widely used in industry
 - E.g. Sulfuric acid , Hydrochloric acid, Sodium Hydroxide

CLASS 8 CORRISIVES

<u>Hazards</u>

- Skin and tissue destruction
- Reacts with metals liberate hydrogen
- May be absorbed into skin
- React with chemicals liberate

Chemical burns

CLASS 9 MISCELLANEOUS

Class 9 encompasses all hazardous materials that do not fit into one of the definitions listed in Class 1 through Class 8.

Example – Dry ice, pollutants

CONCLUSION

- Different classes of HazMat have different properties and pose different threats.
- Knowledge of properties and hazards for different HazMat classes allows us to take the appropriate protective measures during an encounter, enabling us to protect and save lives!