
1 
 

 

 

 

 

 

 

Heatwaves-Driven Human Morbidity and Mortality over 

Selected Counties in Kenya 

 

Bethwel Mutai1 

 

1Department of Earth and Climate Science, University of Nairobi, Kenya 

  



2 
 

1.0 EXECUTIVE SUMMARY 

Although heat-related disasters have risen worldwide, lack of reliable and consistent climate datasets and standard detection 

metrics in Africa can easily downplay not only the existence of episodes of extreme heat, but also the concomitant human 

health impacts. This is particularly the case within the rapidly growing metropolises of sub-Saharan Africa, including those 

in Kenya. In parallel, there is increasing evidence that such extreme heat is affecting health.  

This study sought to investigate the temporal distribution of heatwave events and its concomitant effect of human health. 

To do so, the study relied on both daily observed and satellite maximum temperature data for Nairobi, Tana River, and 

Turkana Counties from 1991 to 2020. Heatwave Magnitude Index daily (HWMId) was employed as a measure of heatwave 

events.  For Pearson’s’ correlation analysis between annual records of heatwave magnitudes and duration, annual records 

of Chronic Obstructive Pulmonary Disease prevalence and deaths were obtained from the Institute of Health Metrics and 

Evaluation (IHME) from the University of Washington  

The linear relationship between the independent variables (i.e., heatwave magnitude and heatwave duration) and COPD 

prevalence and deaths was first confirmed using non-parametric multiple analysis using a Generalized Additive Model 

(GAM). The fitness of the statistical models considered degrees of freedom (DF) and autocorrelation. A parametric 

multivariate analysis between heatwave magnitude and duration, and Chronic Obstructive Pulmonary Disease prevalence 

and deaths was conducted using a Generalized Linear Model (GLM) in order to determine percentage change in relative 

risk.  

The study found out that heatwave events ranging from normal to very extreme have occurred in Kenya during the study 

period. The magnitude of heatwave events varied from zero (i.e., no heatwave events) to a very extreme heatwave event 

(i.e., 9) observed around Turkana in 2005. In the same year an extreme heatwave event (i.e., 7) was recorded in Nairobi. 

Nairobi also experienced a heatwave event of comparable magnitude (i.e., 6) in 2012. Generally, the three selected counties 

(i.e., Nairobi, Tana River and Turkana) experienced normal to moderate on average over 1991–2020 period. Over the study 

duration the longest periods (i.e., 4 continuous years) during which no single heatwave event was observed over the three 

selected counties were 1993 to 1996 and 2017 to 2020. Given that the p-value associated with Mann Kendall test statistic, 

it is concluded that no statistically significant trend is present in both heatwave magnitude and duration. 

Heatwave duration ranged from a minimum duration of 3 days to about 9 days for each event. The longest heatwave events 

occurred in 2012, 1991 and 2005, and span 9 days, 6 days and 7 days over Nairobi, Tana River and Turkana Counties, 

respectively.  Based on the starting date, most heatwave events recorded in the selected counties were observed to begin 

around the months of February–March with the exception of a moderate heatwave that was observed late in the month of 

January over Turkana.  

An analysis of the kernel density plots revealed that heatwave magnitude datasets indicate right-skewed distribution. 

Although both datasets depict non-asymmetric bimodal distribution, it is more prominent with the deaths. The non-

asymmetric bimodal distribution seems to show an outlier within the heatwave magnitude over Turkana. Given that the 

mean and range are more sensitive to such outliers; it would be more appropriate to use median. This implies that the mean, 

median, and mode are not good measures of the dataset: the median is lower than the mean, because the mean is more 
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sensitive to the higher values and is drawn towards the tail of the density plot. Death associated with Chronic Obstructive 

Disease show an even more marked bimodal distribution and some asymmetry. Prevalence on other hand depict varied 

skewness in its distribution. 

COPD prevalence and deaths are understandably significantly correlated as are the heatwave magnitude and duration. At 

0.001 significance level, the correlation is above 0.8 over Nairobi County. This is also known as collinearity (or 

multicollinearity between two or more variables). The duration of a heatwave is statistically dependent on the magnitude 

of the same heatwave. On the other hand, the mortality as a result to Chronic Obstructive Pulmonary Disease is statistically 

related to its prevalence. Although not statistically significant, heatwave characteristics influences the prevalence and 

deaths due to COPD. Over Nairobi heatwave magnitude and duration is correlated with deaths due to COPD with 0.12 and 

0.14 correlations coefficients.  

The risk of COPD prevalence and deaths depict different degrees of linearity with the heatwave characteristics over the 

three Counties. The risk of COPD prevalence varies at different levels of heatwave duration over Nairobi and Tana River 

Counties. The ACF of the GAM model did not show a significant autocorrelation. Based on the GLM results, a statistically 

significant percent relative risk of COPD prevalence of 0.76 % ((-1.82 % to 3.32 %)) increase with respect to a one-day 

increase in the duration of heatwave events over Nairobi was observed. Based on the acceptable linearity assumption, one-

day increase in the duration of heatwave events will lead to a 0.03 % ((-0.99 % to 1.04 %)) increase in the risk of COPD 

prevalence over Tana River. As proposed by Curriero et al. (2002), the low and/or insignificant relative risk for COPD 

could be attributed to acclimatization. Over Turkana County for example, adaptation of populations to their local climate 

is evident by the decrease in COPD risk even with prolonged heatwave duration. 

On the basis of the findings presented in this report, it is recommended that, in order to establish cause effect, cause specific 

(e.g., emphysema, chronic bronchitis etc.) morbidity and mortality data segregated along age and gender and for specific 

health facilities should be incorporated. Research therefore examining whether socio-economic or demographic variables 

or other comorbidities could have a potential confounding or modifying effect on the mortality–temperature relationship 

are recommended. 

Regarding humanitarian work, the observed seasonality in the occurrence of the heatwave event point to the need for 

accurate and timely seasonal forecast of maximum temperature and the accompanying triggers i.e., wind and humidity. 

With such forecasts humanitarian work can be deployed to manage extremely hot and humid days with the understanding 

that there is no better way to avoid a COPD flare-up than to stay indoors.  In acute forecasts the populace who have pre-

existing respiratory health conditions would be advised to even move to parts of the country where weather temperatures 

are more moderate e.g., highlands west and east of the Rift Valley and the western parts. Additionally, and given that 

studies have demonstrated that air pollution worsens the effect of weather on human respiratory health, the populace should 

protect itself from both indoor and outdoor pollutants particularly over crowded urban built areas in the ASALs.  While 

outdoor, one ought to limit the level of physical activity. 
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2.0 ABSTRACT 

This study sought to investigate the temporal distribution of heatwave events and its concomitant effect of human health. 

To do so, the study relied on both daily observed and satellite maximum temperature data for Nairobi, Tana River, and 

Turkana Counties from 1991 to 2020. Heatwave Magnitude Index daily (HWMId) was employed as a measure of heatwave 

events.  For Pearson’s correlation analysis between annual records of heatwave magnitudes and duration, annual records 

of Chronic Obstructive Pulmonary Disease (COPD) prevalence and deaths were obtained from the Institute of Health 

Metrics and Evaluation, University of Washington  

The linear relationship between heatwave magnitude and duration and COPD prevalence and deaths was first confirmed 

using non-parametric Generalized Additive Model (GAM). A parametric multivariate analysis was then conducted using 

a Generalized Linear Model (GLM) in order to determine percentage change in relative risk. 

It is concluded that the observed heatwave events ranging from normal to very extreme have had a negative impact on the 

human respiratory health. It is recommended that, in order to establish cause effect, cause specific morbidity and mortality 

data segregated along age and gender and for specific health facilities should be incorporated.  

Keywords: heatwaves, extreme heat, prevalence, morbidity, hospital admission, deaths, mortality 

3.0 PURPOSE 

Global warming will lead to rapid intensification of extreme events, including heatwaves (Dosio et al., 2017). Studies have 

reported that the duration, frequency, and intensity of heatwaves will increase worldwide (Harrington and Otto, 2020). 

About 3,000 global mortalities were reported due to heatwaves in 2018 (Harrington and Otto, 2020). Although heat-related 

disasters have risen worldwide, lack of reliable and consistent climate datasets and standard detection metrics in Africa can 

easily downplay not only the existence of episodes of extreme heat, but also the concomitant human health impacts. This 

is particularly the case within the rapidly growing metropolises of sub-Saharan Africa, including those in Kenya. In parallel, 

there is increasing evidence that such extreme heat is affecting health. Such negative effects of climate change are bound 

to be reported in Africa, including Kenya, due to greater exposure and vulnerability of the rapidly growing populace like 

has been reported (Ceccherin et al., 2017). According to Amou et al. (2021) heatwaves in Africa, including Kenya, are 

likely to kill people “silently” because it is rarely given the adequately deserving attention.  

The Kenyan Vision 2030, together with the County system of governance, endevours to deliver a climate resilient 

development for its citizenry. This plan reflects the desire of Kenyans for a healthy population that contributes to nation 

building. To do so, the Kenyan government required scientific input on such climate extremes as flood and drought. Given 

the existing inadequate status of knowledge on due to lack of dense network of accurate weather instrumentation and data 

(Donat et al., 2013, the country runs the risk of misunderstanding the concept of heatwave. This study will therefore 

contribute in the development of local heatwave and its impacts on human health. Such scientific understanding of the 

quantitative temporal distribution of heatwaves in the observed and satellite maximum temperature is essential for public 

awareness and decision-making on local intervention programs. 
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The proposed study was carried out in three counties within Kenya: Nairobi (comparatively urban), Tana River 

(comparatively coastal lowland) and Turkana (comparatively ASAL). Kenya is a tropical country nearly bisected by the 

geographic Equator. Rainfall patterns depict a bimodal distribution: long rains and short rains are received in MAM and 

OND seasons, respectively (Camberlin et al., 2009). Although it is generally warm throughout the year, the warmest and 

coldest seasons are December–February (DJF) and June–August (JJA), respectively (Omondi et al., 2014). The ITCZ has 

been reported as the main driver of these seasons (Camberlin et al., 2009).  

4.0 LITERATURE REVIEW 

Heat waves can be defined as consecutive days of extremely hot conditions which exceed  thresholds of temperature 

and span consecutive days (Wang et al., 2020). There is however no single and universally accepted definition (Amou 

et al., 2021). This is because of the differing thresholds, duration and ancillary variables contributing to divergence in 

defining heat waves (Engdaw et al., 2022). 

Africa is considered one of the most vulnerable regions to weather and climate variability (Solomon, 2007); extreme 

events such as heat waves have an impact on public health, water  supplies and food security although there is very little 

information on the magnitude of the impact of heat on health in Africa in the current climate. According to Saracci 

(1997), human health is defined as “a state of complete physical, mental and social well-being and not merely the 

absence of disease or infirmity”. 

Many regions of Africa have already  experienced increases in surface temperature as reported for different subregions, 

analysing various data sets and temperatures are estimated to be 1–2°C higher in the recent decades than during the 

Medieval Climate Anomaly (Nicholson et al. 2013) therefore improving knowledge of temperature changes, the 

occurrence of heat waves, and the time of emergence over natural variability has vital societal importance (Harrington 

and Otto, 2020).  

Despite Africa’s vulnerability, its distribution of heat waves is still poorly understood due to the lack of accurate baseline 

data on current climate (UNECA, 2011). Specifically, there are still uncertainties in the state of the art of the actual 

understanding of temperature extreme regime; only a few studies have considered the whole of Africa (Collins, 2011). 

According to Amou et al. (2021), though global temperatures continue to rise unabated and the episodes of heat-related 

catastrophes across the world intensifies through heatwave phenomena and its associated impacts they are mainly ignored 

and neglected especially in Kenya due to several reasons; unreliable and inconsistent weather datasets and  heatwave 

detection metrics. Some of the impacts of heatwaves as stated by Coumou and Rahmstorf (2012) include increased rates 

of human mortality, strains on man-made infrastructure, and increased rates and intensities of wildfires, which have 

devastating effects on both the natural and built environment. Studies done in the past shows that the impacts of heat 

waves are influenced by the characteristics of individual heat waves i.e. heat waves occurring earlier, lasting longer and 

being more intensive had larger health impacts (Son et al., 2012). 

Most studies of heat waves and morbidity have considered specific major heat waves without adjusting for temperature 

(Li et al., 2015). Studies take temperature into consideration since its variability is a key factor in explaining differences 

in temperature-related mortalities across different regions. Egondi (2012), one such study on heatwaves that considered 



6 
 

temperature among the urban poor population in Nairobi, evaluated the effect of temperature on all-cause mortality in two 

informal settlements in terms of mortality risk. The study concluded that both low and high temperatures were associated 

with excess mortality.  

A study done by Kinney et al. (2008) showed that the relationship between heat and morbidity in any specific area may 

be affected by local population demographics, economic well-being, underlying disease risk, the presence of vulnerable 

subpopulations, weather variability, physiologic acclimatization, and locally available adaptations. 

Temperature-related illness and death are likely underestimated, given the challenges in consistent reporting by clinicians. 

Often death certificates and hospitalization records do not explicitly state that an individual had a temperature-related 

response (Sarofim et al., 2016), especially when temperature is not directly identified as a contributing factor.  

According to Ncongwane (2021) heat stress and human health research has progressed well and is generally now 

embedded within the field of climate change and human health. Interest ingly, the subject matter has been growing steadily 

since the early 1990s, following widespread attention on the human health consequences of climate change from scholars 

worldwide.  

Heat wave is an important aspect to understanding the overall impact of climate change on human health in terms of how 

it will affect mortality and morbidity in the future (Campbell et al., 2018) concluded that heat waves have a direct linkage 

to global climate change and is associated with increased morbidity and mortality.  

Some of the research done in the past showed that short-term increase in mortality and morbidity occur during periods 

of high heat (Sarofim et al. 2016). 

Epidemiological research showed that heat-related mortality is dependent on the severity of the heat event and the 

health status of the affected population ( Sarofim et al. 2016). Heat stress could rapidly become life threatening 

(Mastrangelo et al. 2006) especially among those with limited access to immediate medical attention such as people 

with severe heat stroke symptoms who have little time to seek treatment in emergency departments (EDs) or hospitals 

(Kovats and Ebi 2006). According to Thiaw (2018), extreme weather events such as heat waves associated with 

extremely elevated air temperature and relative humidity could cause cardiovascular illnesses. This was also discovered 

by Owusu (2020) who stated that the more direct impacts on health included those due to changes in exposure to weather 

extremes such as heat waves and winter cold. From his study, heat waves were therefore categorised among weather 

extremes that had more direct impacts on health. 

Some of the previous studies showed that heat waves are thought to be caused by climate change and its effect to human 

health are not well understood (Petkova et al., 2014) despite its vulnerability and distribution in Africa due to the lack of 

accurate baseline data on current climate (UNECA, 2011). According to the World Meteorological Organization (WMO) 

findings, it indicated that the years 2011–2015 had constituted the warmest 5-year period on record (WMO, 2015) and 

heat waves of maximum temperature had increased both in severity and number accordingly. 

Heat waves are considered as one of the deadliest natural disasters since an increase in intensity and frequency of heat 

wave events can contribute to loss of human lives and crop damages (Engdaw et al., 2022). Mbeche et al. (2015) 
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established that the rise in temperatures increase incidences of diseases such as malaria in areas that were originally 

malaria free and other communicable diseases. 

Mostly elderly people are always vulnerable thus they are at a higher risk to the impacts of extreme temperatures (Kenney 

et al., 2014). This is because, older adults often have pre-existing conditions such as cardiovascular, respiratory, renal, and 

neurological diseases that can interfere with their body’s ability to respond to heat stress (Kenney et al., 2014). Kenney et 

al. (2014) proved that there is increase in mortality due to cardiovascular illness which is a result of heat waves, especially 

among the elderly. In percent proportions, Kovats and Ebi (2006) reported that increased mortality during heat waves has 

been attributed mainly to cardiovascular illness (13 % – 90 %) and diseases of the cerebrovascular (6 % – 52 %) and 

respiratory systems (up to 14 %). 

Previous studies have reported different patterns of morbidity in contrast to mortality pattern during heat waves. Hospital 

admissions during heat waves have been reported to increase among both older and younger adults, especially among 

adults living in institutions or engaging in outdoor activities involving exertion (Johnson et al. 2005; Kovats and Ebi 2006). 

Most admissions were for heat-related conditions, including heat exhaustion and heat stroke, dehydration and electrolyte 

disorders, and acute renal failure (Kovats and Ebi 2006; Mastrangelo et al. 2006). Some increases in admissions for 

neurologic conditions and mental illnesses and ambulance transport for violence-related causes have been reported. (Kovats 

and Ebi 2006) 

Better understanding of the patterns of morbidity during heat waves is an important tool for public health practitioners, 

because more intense, more frequent, and longer duration heat waves are projected for the coming decades (Meehl and 

Tebaldi, 2004). The health impacts of climate change are gaining considerable attention (Frumkin et al., 2008), with 

increases in heat wave–related illness and death among the most likely related challenges to public health     (Kovats and 

Hajat, 2008). 

Apart from heat health-related risk threats, high temperature- induced heat stress is increasingly becoming an 

impediment to socio-economic activities. Workers engaged in strenuous labour, mainly in humid and poorly ventilated 

environments, including those regularly exposed to hot working conditions, such as those in construction or the 

agricultural sector including the fisheries and forestry (Acharya et al., 2018).  According to Acharya et al. (2018) 

exposure to extreme and prolonged heat has led to reduced worker enthusiasm and performance at their work; at the 

same time, a natural reaction of self-pacing working activities to maintain inner core body temperature will reduce 

working capacity and lower workers’ productivity. McMaughan et al. (2020) shows that the increased heat 

susceptibility due to disadvantaged socioeconomic status may be related to poor baseline health status, limited access 

to health care and high prevalence of health problems. They showed that men are assumed to be more stressed by heat 

than women, as men are exceedingly exposed to heat in physically demanding outdoor activities (e.g., farming, mining 

and construction work). Other studies have reported that men and women have slightly different physiology, endocrinal 

physiology and body characteristics, specifically that women have a larger surface to mass ratio, which implies that 

women are more prone to heat loss (McMaughan et al., 2020). Experimental evidence also showed that females were 

more heat intolerant than males due to potential gender-related physiological and thermoregulatory differences  

5.0 RESEARCH METHODOLOGY  
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5.1 Heatwave Magnitude Index Calculation 

With the daily observed and satellite maximum temperature data for Nairobi (comparatively urban), Tana River 

(comparatively coastal lowland) and Turkana (comparatively ASAL) Counties, the magnitude and duration of heatwave 

events during the past three decades (i.e., period from 1991 to 2020) was obtained using Heatwave Magnitude Index daily, 

HWMId (Russo et al., 2015).  According to Amou et al. (2021), HWMId has been recently developed to remedy the 

limitations of Heatwave Magnitude Index, HWMI (Russo et al., 2014). Amou et al. (2021) defines HWMId as the 

maximum magnitude of the heatwaves in a year. Heatwave, on the other hand, operationally refers to a duration of at least 

three consecutive days with maximum temperature above 90th percentile threshold of the reference period (Funk et al., 

2019), which in this study is the 30-year period from 1989 to 2018. This definition permits the comparison of heatwaves 

of different lengths and peak magnitudes that have occurred in the three Counties in different years. The definition sums 

excess temperatures beyond a certain threshold and merges durations and temperature anomalies of intense heatwave 

events into a single numeric indicator (Amou et al., 2021). Russo et al. (2015) defined the 90th percentile centered on 31 

days’ time step as is shown in Equation 1: 

𝐴! = 𝑈"#$%&%'($& 	𝑈)#!*$+!,$+ 	𝑇",)      Equation 1 

Where; 

• Ty,i is the daily maximum temperature on the ith day of the year y 

• U is the union of sets 

• Ad is the set of data 

• d is a particular day 

The three-stage procedure of obtaining HWMId index has been described comprehensively by Dobricic et al. (2020). In 

this study, this index was determined annually using the {extRemes} package, and specifically the {hwmid} function within 

the R programing language environment. With the baseline/analysis and reference data from 1991-2020 and 1989-2018 

(1990 - 2021), respectively, 2019 and 2020 was used for both change detection and human health impact analysis. 

Probability density function was employed to display the temporal distributions. Additionally, Mann–Kendal (M-K) test 

was used to examine the statistical significance of the trend. The classification of heatwave severity was based on Amou 

et al. (2021) as shown in Table 1. 

Table 1: Classification of Heatwave Magnitude Index daily (HWMId) 

Category Range 

Normal 1≤HWMId<2 

Moderate 2≤HWMId<3 

Severe 3≤HWMId<4 

Extreme 4≤HWMId<8 

Very Extreme 8≤HWMId<16 

Super Extreme 16≤HWMId<32 

Ultra Extreme HWMId≥32 
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Source: Amou et al. (2021) 

5.2 Climate and Health Regression Analysis 

So as to enable correlation between annual records of heatwave magnitude and duration, annual Chronic Obstructive 

Pulmonary Disease prevalence and deaths were obtained from the 2019 Global Burden of Diseases (GBD) at the Institute 

of Health Metrics and Evaluation (IHME) from the University of Washington. This dataset includes all COPD causes, 

annual measure of prevalence and mortality for all age groups and all sexes for the three selected Counties in Kenya. 

According to Marmo et al. (2006), COPD is a group of lung diseases, commonly emphysema and chronic bronchitis, that 

block airflow and make it difficult to breathe with the following accompanying symptoms: shortness of breath, wheezing 

or a chronic cough. 

The temporal evolution and spatial comparison was made using the daily and monthly morbidity and mortality records 

collected from the representative health facility within the three Counties for at least two recent study period/years.  

After performing univariate analys using Spearman ‘s correlation coefficients, a regression model was developed. Multiple 

regression analysis technique is as shown in Equation (2). 

y' = b( + b$x$ +	b'x' +… 	b.x.        (2) 

Where y' is the predicted or expected value of the dependent variable (health outcome), x1 through xn are n distinct 

independent or predictor variables (maximum temperature), b0 is the value of y when all of the independent variables (i.e., 

x1 through xn) are equal to zero, and b1 through bn are the estimated regression coefficients. 

In order to control for day of week, a 7-day moving average smoothing approach was performed. For unusual events such 

as public holidays and medical strikes, no adjustment was made.  

The linear relationship between the independent variables (i.e., heatwave magnitude and heatwave duration) and COPD 

prevalence and deaths was first confirmed using non-parametric multiple analysis using a Generalized Additive Model 

(GAM).  

The fitness of the statistical models considered degrees of freedom (DF) and autocorrelation. In order to check the linearity 

of heatwave characteristics, a sensitivity analysis was conducted by comparing the results while adjusting the degrees of 

freedom (i.e., k). Given that the sample size was less than 10,000, the gam () functionality was used as opposed to the bam 

(). In addition the te() smooth function, as opposed to s(), was used given that the heatwave characteristics are not isotropic 

(i.e., have different units of measure. Given the length of the study dataset, the default value of k =5 for te() could not be 

used; k = 4 was used for Nairobi and Turkana and k = 3 for Tana River. The form of the model used is as shown in Equation 

(3).  

gam<-gam(data[1:30,2]~te(data[1:30,4],k=4)+te(data[1:30,5],k=4),family=poisson()) …………………. (3) 
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Due to skewness in the Chronic Obstructive Pulmonary Disease prevalence and deaths, the relative risk was then 

transformed to a logarithmic scale in order to achieve a normal distribution just as is the case in epidemiological studies 

(e.g., BMJ, 2012). 

A parametric multivariate analysis between HWMId, heatwave duration and intensity, and human health morbidity and 

mortality was then conducted using a Generalized Linear Model (GLM). Equation 4 shows the general form of the glm( ) 

function used to fit GLMs.  

glm(formula, family=familytype(link=linkfunction), data=)      (4) 

Since health data are commonly assumed to follow a Poisson process (Ahlbom, 2017), a Poisson regression was applied 

in this study i.e., poisson {family} and logit {link} functions. Equation 5 shows the form of the glm( ) function that was 

used to fit GLMs in this study.  

glm<-glm(data[1:30,2]~(data[1:30,4])+(data[1:30,5]),family=poisson())    (5) 

Using output from the GLM, percentage change in relative risk for Chronic Obstructive Pulmonary Disease was then 

determined. 

6. FINDINGS AND CONCLUSION 

6.1 Heatwave Analysis 

6.1.1 Heatwave Magnitude Index Daily (HWMId) 

Figure 1 shows the temporal evolution of annual records of Heatwave Magnitude Index Daily (HWMId) between 1991 

and 2020 over Nairobi, Tana River and Turkana Counties in Kenya. Based on the heatwave classification in Table 1, 

heatwave events ranging from normal to very extreme have occurred in Kenya during the study period. The magnitude of 

heatwave events varied from zero (i.e., no heatwave events) to a very extreme heatwave event (i.e., 9) observed around 

Turkana in 2005. In the same year an extreme heatwave event (i.e., 7) was recorded in Nairobi. Nairobi also experienced 

a heatwave event of comparable magnitude (i.e., 6) in 2012. Generally, and as is shown in Figure 1, the three selected 

counties (i.e., Nairobi, Tana River and Turkana) experienced normal to moderate on average over 1991–2020 period. These 

results are in agreement with those of Amou et al. (2021) over Garissa, Tana River, Turkana, and West Pokot counties. In 

contrast, Amou et al. (2021) report moderate to severe on heatwave events on average over most other parts of the country 

including Nairobi. It is worth noting that Amou et al. (2020) relied on CHIRTS data for the period 1987–2016. Over the 

study duration the longest periods (i.e., 4 continuous years) during which no single heatwave event was observed over the 

three selected counties were 1993 to 1996 and 2017 to 2020. Given that the p-value associated with Mann Kendall test 

statistic, it is concluded that no statistically significant trend is present in both heatwave magnitude and duration. 
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Figure 1: Heatwave Magnitude Index Daily between 1991 and 2020 over Nairobi, Tana River and Turkana Counties in Kenya 

6.1.2 Heatwave Starting Day and Duration 

Figure 2, Figure 3 and Figure 4 show starting date and duration (in days) associated with the heatwave events observed 

between 1991 and 2020 over Nairobi, Tana River and Turkana Counties, respectively. As is evident, heatwave duration 

ranged from a minimum duration of 3 days to about 9 days for each event. The longest heatwave events occurred in 2012, 

1991 and 2005, and span 9 days, 6 days and 7 days over Nairobi, Tana River and Turkana Counties, respectively.  It is 

worth noting that the longest heatwave event over Turkana was very extreme whereas that over Tana River was moderate. 

Based on the starting date, most heatwave events recorded in the selected counties were observed to begin around the 

months of February–March with the exception of a moderate heatwave that was observed late in the month of January over 

Turkana. Given the country’s latitudinal location, this start dates may be linked to the equatorward approach of the overhead 

sun in tandem with its apparent south to north movement. The cloudiness associated with the March-April-May long rains 

appear to moderate the daily temperature range thereby limiting the occurrence of the heatwave events. 
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Figure 2: Heatwave Magnitude, Starting Date and Duration (Days) between 1991 and 2020 over Nairobi County 

 
Figure 3: Heatwave Magnitude, Starting Date and Duration (Days) between 1991 and 2020 over Tana River County 
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Figure 4: Heatwave Magnitude, Starting Date and Duration (Days) between 1991 and 2020 over Turkana County 

 

6.2 Density Plot Analysis 

Figure 5 and Figure 6 depict that kernel density plots of Heatwave Magnitude Index Daily (i.e., independent variable) and 

Chronic Obstructive Pulmonary Disease prevalence and deaths (dependent variables) between 1991 and 2020 over Nairobi, 

Tana River and Turkana Counties in Kenya, respectively. The smaller the bandwidth, the more the components of the 

mixture of distributions e.g., normal, uniform etc. Evaluation of the shape of the heatwave magnitude datasets indicate 

right-skewed distribution. Although both datasets depict non-asymmetric bimodal distribution, it is more prominent with 

the deaths. The non-asymmetric bimodal distribution seems to show an outlier within the heatwave magnitude over 

Turkana. Given that the mean and range are more sensitive to such outliers; it would be more appropriate to use median. 

This implies that the mean, median, and mode are not good measures of the dataset: the median is lower than the mean, 

because the mean is more sensitive to the higher values and is drawn towards the tail of the density plot. As is shown in 

Figure 6, deaths associated with Chronic Obstructive Disease show an even more marked bimodal distribution and some 

asymmetry. Prevalence on other hand depict varied skewness in its distribution 
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Figure 5: Kernel Density Plots of Heatwave Magnitude Index Daily between 1991 and 2020 over Nairobi, Tana River and Turkana 
Counties in Kenya 

 
Figure 6: Kernel Density Plots of Chronic Obstructive Pulmonary Disease Prevalence and Deaths between 1991 and 2020 over Nairobi, 
Tana River and Turkana Counties in Kenya 
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6.3 Pearson’s Correlation Analysis 

Figure 7, Figure 8 and Figure 9 gives a correlation matrix of Chronic Obstructive Pulmonary Disease prevalence and 

deaths and heatwave index and duration over Nairobi, Tana River and Turkana Counties, respectively. It is evident that 

COPD prevalence and deaths are understandably significantly correlated as are the heatwave magnitude and duration. At 

0.001 significance level, the correlation is above 0.8 over Nairobi County. This is also known as collinearity (or 

multicollinearity between two or more variables). The duration of a heatwave is statistically dependent on the magnitude 

of the same heatwave. On the other hand, the mortality as a result to Chronic Obstructive Pulmonary Disease is statistically 

related to its prevalence. Although not statistically significant, heatwave characteristics influences the prevalence and 

deaths due to COPD. Over Nairobi heatwave magnitude and duration is correlated with deaths due to COPD with 0.12 and 

0.14 correlations coefficients. This is in agreement with results of Kovats and Ebi (2006) on cardiovascular diseases, and 

Coumou and Rahmstorf (2012) and Sarofim et al. (2016) on increased rates of overall human mortality. According to 

Marmo et al. (2006), temperature, and other weather variables e.g., wind and humidity, can cause COPD symptoms to 

worsen. The dry air typical of January-February months over Kenya, coupled with other local factors and pre-existing 

medical conditions, can trigger a COPD flare-up.  

 
Figure 7: Correlation matrix of Chronic Obstructive Pulmonary Disease prevalence and deaths and heatwave index and duration over 
Nairobi County showing correlation coefficients (top of the diagonal) with red asterisks depicting statistical significance levels (i.e., *, 
**, and *** show 0.05, 0.01 and 0.001, respectively), bivariate scatterplots (bottom of the diagonal) with a fitted red line, and histograms 
(diagonal) with red kernel density overlays 
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Figure 8: Correlation matrix of Chronic Obstructive Pulmonary Disease prevalence and deaths and heatwave index and duration over 
Tana River County showing correlation coefficients (top of the diagonal) with red asterisks depicting statistical significance levels (i.e., 
*, **, and *** show 0.05, 0.01 and 0.001, respectively), bivariate scatterplots (bottom of the diagonal) with a fitted red line, and 
histograms (diagonal) with red kernel density overlays 
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Figure 9: Correlation matrix of Chronic Obstructive Pulmonary Disease prevalence and deaths and heatwave index and duration over 
Turkana County showing correlation coefficients (top of the diagonal) with red asterisks depicting statistical significance levels (i.e., *, 
**, and *** show 0.05, 0.01 and 0.001, respectively), bivariate scatterplots (bottom of the diagonal) with a fitted red line, and histograms 
(diagonal) with red kernel density overlays 

6.4 Multivariate Regression Analysis 

The combined association between heatwave magnitude and duration and Chronic Obstructive Pulmonary Disease 

prevalence and deaths was obtained using the multivariate analysis. 

6.4.1Generalized Additive Model (GAM) Analysis  

The linearity of Chronic Obstructive Pulmonary Disease prevalence and deaths reported at the Nairobi (top), Tana River 

(middle) and Turkana (bottom) counties between 1991 and 2016 associated with independent variables of Heatwave 

Magnitude [HWMId] and Heatwave Duration [days] are as shown in Figure 10. As is evident, the risk of COPD prevalence 

and deaths depict different degrees of linearity with the heatwave characteristics over the three Counties. COPD prevalence 

are linearly and inversely related to heatwave magnitude over the Nairobi and Tana River, and linearly and directly over 

Turkana County. These varied results are in agreement with Curriero et al. (2002) who have shown that different areas 

have different sensitivities to extremes in temperature; arguing that the local climate should be considered. Heat waves 

having gained more attention due to the urban warming attributed to greenhouse gases and other anthropogenic sources, 

air conditioning and human behavior could explain the inverse relationship over Nairobi due to their substantial 

modification of the adverse effects of high temperatures.  
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The risk of COPD prevalence decreases linearly with heatwave duration over Turkana County but varies at different levels 

of heatwave duration over Nairobi and Tana River.  The implied non-linearity over Nairobi for example, depicts that 

heatwave events lasting shorter than 3-days lead to a decrease in the risk of COPD prevalence. When the duration of the 

heatwave events increases beyond 4-days, the risk is increased. The opposite is observed in Tana River: heatwave events 

lasting shorter than 3-days lead to an increase whereas longer events are associated with a decrease in the risk of COPD 

prevalence. Deaths due to COPD are linearly and constantly related to both heatwave magnitude and duration over the 

three Counties.  

The autocorrelation function (ACF) at default maximum lagging-period for annual Chronic Obstructive Pulmonary Disease 

prevalence and deaths between 1991 and 2020 over Nairobi, Tana River and Turkana Counties in Kenya is as shown in 

Figure 11. As may be deduced from the figure, the ACF of the GAM model did not show a significant autocorrelation.  
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Figure 10: Log (RR)s of Chronic Obstructive Pulmonary Disease prevalence and deaths reported at the Nairobi (top), Tana River (middle) and Turkana (bottom) counties between 1991 
and 2016 associated with independent variables of Heatwave Magnitude [HWMId] and Heatwave Duration [days] obtained using a Generalized Additive Model. The shaded area 
represents the confidence bounds  
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Figure 11: Autocorrelation function (ACF) at default maximum lagging-period for annual Chronic Obstructive Pulmonary Disease prevalence and deaths between 1991 and 2020 over 
Nairobi, Tana River and Turkana Counties in Kenya 
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6.4.2 Generalized Linear Model (GLM) Analysis 
Table 2 sows the percent relative risk for Cardiopulmonary Chronic Obstructive Pulmonary Disease prevalence and deaths 

based on Generalized Linear Model of heatwave magnitude and duration between 1991 and 2020 over Nairobi, Tana River 

and Turkana Counties in Kenya. It is worth noting that based upon the GAM results, the linearity assumption was deduced 

to be acceptable between COPD prevalence and heatwave duration over Nairobi and Tana River Counties. It is for this 

reason that the only statistically significant percent relative risk of COPD prevalence is a 0.76 % ((-1.82 % to 3.32 %)) 

increase with respect to a one-day increase in the duration of heatwave events over Nairobi. Based on the acceptable 

linearity assumption, one-day increase in the duration of heatwave events will lead to a 0.03 % ((-0.99 % to 1.04 %)) 

increase in the risk of COPD prevalence over Tana River. As proposed by Curriero et al. (2002), the low and/or insignificant 

relative risk for COPD could be attributed to acclimatization. Over Turkana County for example, adaptation of populations 

to their local climate is evident by the decrease in COPD risk even with prolonged heatwave duration.  
Table 2: : Percent Relative risk for Cardiopulmonary Chronic obstructive pulmonary disease prevalence and deaths based on Generalized 
Linear Model of heatwave magnitude and duration between 1991 and 2020 over Nairobi, Tana River and Turkana Counties in Kenya 

  
 

7. CONCLUSION AND RECOMMENDATION 

The main objective of this research was to investigate the temporal distribution of heatwave events and its concomitant 

effect of human health. To do so, the study relied on both daily observed and satellite maximum temperature data for 

Nairobi, Tana River, and Turkana Counties from 1991 to 2020. Heatwave Magnitude Index daily (HWMId) was employed 

as a measure of heatwave events.  For Pearson’s correlation analysis between annual records of heatwave magnitudes and 

duration, annual records of Chronic Obstructive Pulmonary Disease (COPD) prevalence and deaths were obtained from 

the Institute of Health Metrics and Evaluation, University of Washington  

The linear relationship between heatwave magnitude and duration and COPD prevalence and deaths was first confirmed 

using non-parametric Generalized Additive Model (GAM). A parametric multivariate analysis was then conducted using 

a Generalized Linear Model (GLM) in order to determine percentage change in relative risk. 

Prevalence Deaths

-0.46 % -0.14 % 

(-4.47 % to 3.48 %) (-5.89 % to 5.47 %)

0.76 % *** 1.04 % 

(-1.82 % to 3.32 %) (-2.69 % to 4.71 %)

-0.66 % -0.89 % 

(-3.55 % to 2.22 %) (-12.38 % to 10.45 %)

0.03 % -0.04 % 

(-0.99 % to 1.04 %) (-4.09 % to 3.94 %)

0.22 % 0.18 % 

(-0.53 % to 0.97 %) (-2.7 % to 2.99 %)

-0.51 % -0.25 % 

(-1.11 % to 0.08 %) (-2.53 % to 2 %)

Location

Tana 
River 

County

Turkana 
County

Magnitude

Duration

Magnitude

Duration

Magnitude

Duration

% Relative Risk (95 % CI)Heatwave 
Characteristic

Nairobi 
County
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From the research that has been carried out, it is concluded that the observed heatwave events ranging from normal to very 

extreme have had a negative impact on the human respiratory health. the risk of COPD prevalence and deaths depict 

different degrees of linearity with the heatwave characteristics over the three Counties. A statistically significant percent 

relative risk of COPD prevalence of 0.76 % ((-1.82 % to 3.32 %)) increase with respect to a one-day increase in the duration 

of heatwave events over Nairobi was observed. As proposed by Curriero et al. (2002), the low and/or insignificant relative 

risk for COPD could be attributed to acclimatization. Nevertheless, Pyrgou (2018) argues that even if populations became 

fully acclimatized to extremely high temperatures, the poorer air quality associated with the such temperatures may still 

negatively affect their health.  

On the basis of the findings presented in this report, it is recommended that, in order to establish cause effect, cause specific 

(e.g., emphysema, chronic bronchitis etc.) morbidity and mortality data segregated along age and gender and for specific 

health facilities should be incorporated. Research therefore examining whether socio-economic or demographic variables 

or other comorbidities could have a potential confounding or modifying effect on the mortality–temperature relationship 

are recommended. 

Regarding humanitarian work, the observed seasonality in the occurrence of the heatwave event point to the need for 

accurate and timely seasonal forecast of maximum temperature and the accompanying triggers i.e., wind and humidity. 

With such forecasts humanitarian work can be deployed to manage extremely hot and humid days with the understanding 

that there is no better way to avoid a COPD flare-up than to stay indoors.  In acute forecasts the populace who have pre-

existing respiratory health conditions would be advised to even move to parts of the country where weather temperatures 

are more moderate e.g., highlands west and east of the Rift Valley and the western parts. Additionally, and given that 

studies have demonstrated that air pollution worsens the effect of weather on human respiratory health, the populace should 

protect itself from both indoor and outdoor pollutants particularly over crowded urban built areas in the ASALs.  While 

outdoor, one ought to limit the level of physical activity. 

8. STUDY LIMITATIONS 

The study recognition of the critical role of accurate and finer resolution climate data, and private and confidential 

aggregated health data records in epidemiology justifies (i) the complimentary use of high-resolution satellite data as a 

remedy for data gap, and (ii) aggregated (ward level) and gender-segregated health records.   

There exist several limiting factors that informed and justified the choice of both limited space and scope of this study. 

Even though data on health outcomes and environmental risk factors (in this case maximum temperature) would be needed 

at the smallest possible unit (e.g., sub-county) since larger areas may conceal the local-level variations, data availability 

limited the spatial range of the assessment. Therefore, data was aggregated at County level. Some of the datasets may be 

national in scope and may not provide sufficient detail for County governments. Additionally, the exclusion of other 

variables which are known risk factors e.g., air pollution, smoking, level of exercise, may be a source of uncertainty.   

Human health data insufficiency and confidentiality informed the use of coarse time and space -resolved data, especially 

WHO country annual statistics. Moreover, a study participants’ informed consent was not obtained from the Ministry of 

Health and a research approval was not sought from the KNH/UoN ERC, implying that only records of selected climate-

sensitive disease data were considered, and not individual patients’ data.  
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Appendix A: Total Monthly All-Cause Outpatient Data Reported at AMURT Health Centre, Nairobi, Kenya 

 

Figure 12: Total Monthly All-Cause Outpatient Data Reported between 2020 and 2021 at AMURT Health Centre, Nairobi, Kenya 
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Appendix B: Total Monthly All-Cause Visits, Hospitalizations and Deaths Reported at Mathari Hospital, Nairobi, 

Kenya 

 

Figure 13: Shows the Total Monthly All-Cause Visits, Hospitalizations and Deaths Reported between 2011 and 2020 at Mathari Hospital, 
Nairobi, Kenya 
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Appendix C: Total Monthly All-Cause Visits, Hospitalizations and Deaths Reported at Mbagathi Hospital, Nairobi, 

Kenya 

 

Figure 14: Shows the Total Monthly Al-Cause Visits, Hospitalizations and Deaths Reported between 2011 and 2020 at Mbagathi 
Hospital, Nairobi, Kenya 
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Appendix D: Total Monthly All-Cause Inpatient Admission, Inpatient Discharge and Inpatient Deaths at Mbagathi 

Hospital, Nairobi 

 

Figure 15: Shows the Total Monthly All-Cause Inpatient Admission, Inpatient Discharge and Inpatient Deaths between 2011 and 2020 
at Mbagathi Hospital, Nairobi 
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Appendix E: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Death at Hola Hospital, Tana 

River 

 

 

Figure 16: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Death between 2017 and 2020 at Hola Hospital, 
Tana River 
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Appendix F: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Discharge at Hola Hospital, 

Tana River 

 

Figure 17: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Discharge between 2018 and 2020 at Hola 
Hospital, Tana River 
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Appendix G: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Deaths at Ngao Hospital, 

Tana River 

 

Figure 18: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Deaths between 2019 and 2020 at Ngao Hospital, 
Tana River 
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Appendix H: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Discharge at Ngao 

Hospital, Tana River 

 

Figure 19: Cardio-Respiratory Health Related Hospital Admission Days Leading up to Discharge between 2019 and 2020 at Ngao 
Hospital, Tana River 
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Appendix I: Upper Respiratory Tract Infections (URTI) and Other Diseases of the Respiratory System (ODRS) at 

Lodwar County Referral, Turkana 

 

Figure 20: Monthly Upper Respiratory Tract Infections (URTI) and Other Diseases of the Respiratory System (ODRS) between 2018 
and 2020 at Lodwar County Referral, Turkana 
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