Hồ Chí Minh

Kuala Terengganu

uerto Princesa

Zamboanga City Davao C

N

Kota Kinabalue

General Santos

Research findings on heat stress in Indonesia

Presenter: Carolina Pereira Marghidan

Red Cross Red Crescent Climate Centre

February 2023

Person-days per year (*10^5)

George Town

da Aceh

▲ 0,8 - 2,5

Studies have shown...

Heat stress is rising

- Tropical, humid areas will be disproportionately exposed to deadly heat stress, compared to higher latitudes. ^(Mora et al., 2017)
- Chronic heat stress has been observed in informal settlements in Makassar, which was underestimated by weather stations
- Indonesia is projected to experience more frequent, longer, and more intense heat stress in the future.

Article

Chronic heat stress in tropical urban informal settlements

Source: Ramsay et al. (2021)

Indonesia is a country vulnerable to various climate risks, but heat stress has been **largely overlooked**.

Shinji Kaneko · Masato Kawanishi *Editors*

Climate Change Policies and Challenges in Indonesia

Source: Kaneko & Kawanishi (2016)

Climate Centre

Aims of this study

Objective 1: Hazard

How many days of heat stress have occurred and has this changed over time? To understand spatio-temporal characteristics of heat stress & corresponding trends

Objective 2: Exposure

RO2

RO1

How many people have been exposed and has this changed over time? To understand the number of people exposed to heat stress and the driving factor (warming vs. population)

Methods & datasets

Wet-bulb Globe Temperature (WBGT) 1983 - 2016

- **WBGT** = a combination of radiated heat, 2m air temperature, wind, and relative humidity.
- High-resultion daily extreme urban heat exposure (UHE-daily)
- Developed by NASA Socioeconomic Data and Applications Center (SEDAC)
- Available through: <u>https://sedac.ciesin.columbia.edu/data/set/sdei-high-res-daily-uhe-1983-2016</u>. (Tuholske et al., 2021)

The datasets were analyzed and visualized using Excell and ArcGIS Software.

Heat stress definition

Heat stress was defined as: WBGT > 30 °C, as this follows the International Standards Organization (ISO) criteria for risk of heat-related impacts.

Over time, the number of heat stress days has significantly **increased** across Indonesia.

Annual increase in humid-hot days (WBGT > 30 °C) from 1983 - 2016

Annual increase in humid-hot days (WBGT > 30 °C) from 1983 - 2016

Annual increase in exposure (person-days) for 1983 - 2016

Contribution to increase in exposure (warming vs. population)

Heat stress impacts **human health**, **livelihoods**, and **the economy**

Heat stress leads to **great economic losses** and impacts **livelihoods**

- Decreased productivity & reduced work hours. (Indonesia has been identified as one of the countries suffering **most losses** of potential labour capacity, estimated at **4-6% of the annual GDP.**⁷)
- Crops & livestock can be lost, threatening food security.
- Impacts can be compounded when heat stress interacts with other hazards such as wildfires or droughts.

Heat stress impacts **human health** & can be **<u>deadly</u>**

- Heat stress excerbates pre-existing health conditions (e.g. respiratory, cariovascular, and kidney diseases)
- Heat-illnesses: dehydration, heat cramps, heat stroke, dizziness, fatigue, and more.
- Increases hospitalizations and emergency admissions, putting strain on health services

	Billions of work hours lost in 2000 (n=199-0)	Billions of work hours lost in 2019 (n=302∙4)	Work hours lost per person in 2019
Global	199-0	302-4 (100-0%)	52-7
India	75.0	118-3 (39-1%)	111-2
China	33-4	28-3 (9-4%)	24-5
Bangladesh	13·3	18-2 (6-0%)	148-0
Pakistan	9-5	17-0 (5-6%)	116-2
Indonesia	10.7	15-0 (5-0%)	71-8

[7] Source: Watts et al. (2020)

In 2019, **71.8 work** hours were lost per person due to heat stress, translating to a total of **15 billion lost work hours in 2019**.

Although heat stess can impact anyone, **vulnerable groups of people** are affected disproportionately:

Heat stress is **rapidly increasing** across Indonesia, as well as the number of people exposed.

There is an **urgent need to better understand current and future <u>heat risks</u> on a local scale** across Indonesia.

In order to ensure **economic development**, **healthy & resilient communities** across Indonesia.

Reducing risk to heat

The good news: there is much scientific evidence on how to effectively reduce heat risks, which can be coupled with existing development plans.

> **BEATING THE HEAT:** INVESTING IN PRO-POOR SOLUTIONS FOR URBAN RESILIENCE

> > ADF

AUGUST 2022

Turn Down

Climate Extremes, Regional

Impacts, and the Case for Resilience

GUIDE FOR CITIES

+CIFRC | (OCHA | +C Climate Centre

HEATWAVES

Potential actions for PMI

Long-term

- Improving **public messaging** of heat risks to raise awareness
- **Training** caregivers in social facilities (nursing homes, orphanages, etc.)
- Working together with local universities to **co-develop studies**

Short-term

- Planning **household visits**, as well as **school visits** (particularly in vulnerable neighborhoods) to raise awareness
- Providing **drinking water distribution points**
- Supporting **community early warnings**
- Opening cooling centers

[8] Source: City Heatwave Guide, Singh et al. (2019)

Thank you for listening! Questions?

References

- 1. Dong, Z., Wang, L., Sun, Y., Hu, T., Limsakul, A., et al.: Heatwaves in Southeast Asia and Their Changes in a Warmer World, Earth's Futur., 9, 1–13, https://doi.org/10.1029/2021EF001992, 2021.
- 2. Kaneko, S. and Kawanishi, M.: Climate Change Policies and Challenges in Indonesia, 111–144 pp., https://doi.org/10.1007/978-4-431-55994-8_5, 2016.
- 3. Mora *et al.*, "Global risk of deadly heat," *Nat. Clim. Chang.*, vol. 7, no. 7, pp. 501–506, 2017, doi: 10.1038/nclimate3322.
- 4. Ramsay, E. E., Fleming, G. M., Faber, P. A., Barker, S. F., Sweeney, R., et al.: Chronic heat stress in tropical urban informal settlements, iScience, 24, https://doi.org/10.1016/j.isci.2021.103248, 2021.
- 5. Singh, R., Arrighi, J., Jjemba, E., Strachan, K., Spires, M. and Kadihasanoglu, A. (2019). Heatwave Guide for Cities. Red Cross Red Crescent Climate Centre, 2019. Available through: <u>https://preparecenter.org/resource/city-heatwave-guide-for-red-cross-red-crescent-branches/</u>
- 6. Tuholske *et al.*, "Global urban population exposure to extreme heat," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 118, no. 41, pp. 1–9, 2021, doi: 10.1073/pnas.2024792118.
- 7. Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Beagley, J., et al.: The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises, Lancet, 397, 129–170, https://doi.org/10.1016/S0140-6736(20)32290-X, 2021.