Urban planning at the heart of
increasingly severe East African flood
Impacts in a warming world
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Main findings

Countries in East Africa have been facing disaster after disaster, including prolonged drought
between 2020-23, and multiple episodes of torrential rainfall leading to severe flooding. These
disasters combine to create a complex humanitarian emergency that includes displacement,
infrastructure loss, food insecurity, health risks, disrupted livelihoods, and overall weakened
resilience.

Rapid urbanisation in cities across East Africa is amplifying flood risks, especially in large
informal areas that are located on flood-prone land, lack adequate structural protections from the
rains, and whose residents lack resources to recover and rebuild. Land-use changes, including
deforestation and conversion to agricultural land are also occurring to different degrees in each of
the countries studied, adding to flood risk.

The East African long rains were observed to show a drying trend towards the end of the 20th
century, while climate models projected an increase in heavy rainfall with global warming. While
this so-called East Africa Paradox is not as pronounced anymore, with observed precipitation
increasing and a new generation of climate models showing weaker or no wettening trend,
interpreting observations and climate models is still challenging in this region.

The observations, independent of the exact region and data product, do not show a long term
trend, but instead a drying trend towards the end of 20th century up until around 2008 and a
wettening in the last 15 years. Regardless of whether the recent recovery is being enhanced by
human-induced climate change, the increased precipitation does bring an increased risk of
flooding to the region.

To understand if human-induced climate change is indeed playing a role, we also assess whether
there are wettening or drying trends in the region for the long rains in climate models. While the
trends are not statistically significant, they do show a wettening. On average, an event like this
has become about twice as likely and 5% more intense in today’s climate, representing the effect
of 1.2C of global warming.

Looking at the future, for a climate 2°C warmer than in preindustrial times, models suggest that
rainfall intensity and likelihood will increase further.

We also examined whether the current phase of the El Nino Southern Oscillation or the Indian
Ocean Dipole played a role in the intensity and likelihood of the wet March-May rainy season.
Both modes of natural climate variability have been found to exhibit a negligible influence on the
2024 long rains in the study region.

Taking these findings and the known physical relationship that heavy rainfall is expected to
increase in a warming world, we conclude that the observed increase in rainfall in the region over
the last 15 years is in part driven by human-induced climate change.

Therefore, investing in flood resilience with future warming is paramount.

While early warning systems in each of the countries exist and warn of extreme rainfall, there is
room to expand the action taken based on warnings to adequately protect people from the rainfall
impacts. Social protection programs can fill gaps in instances where it’s not possible to avoid all
impacts, in order to help people recover their assets and livelihoods after the disaster.

Disaster preparedness policies, flood preparedness and protection infrastructure, and early
warning systems that are in place across Kenya, Tanzania and Burundi are all steps in the right
direction, but must be integrated and implemented at scale in order to reduce impacts



1 Introduction

Intense and recurrent extreme weather and climate events in East Africa (Kilavi et al, 2018; Kimutai et

al., 2022; Palmer et at., 2023; Licbmann et al., 2014; Philippon et al., 2015; Hoell et al., 2017; Funk et al.,
2018) continue to wreck developmental gains and subject hardship for communities across the region. In
2011 (Lott at al., 2013), 2016-2017 (Uhe et al., 2018) and 2020-2023 (WWA. 2023; Kimutai et al., under
review), prolonged drought conditions resulted in widespread impacts to humans, including crop and
harvest losses, livestock deaths, hunger, and malnutrition. In March-April-May (MAM) 2012, 2016 and

2018 (Kimutai et al., 2022) and October-November-December (OND) 2019 (EEWSNET, 2020;
Wainwright et al.. 2020) and 2023 (WWA. 2023) the region experienced several heavy precipitation

events with devastating impacts on agriculture, infrastructure, settlements, property, and life. In
March-April 2024, the region experienced devastating flooding causing human deaths, destroying
infrastructure and crops and killing livestock and wildlife. In April 2024, floods killed over 200 people
and displaced over 150,000 people in Kenya. A dam burst on 29 April in Nakuru County killing at least
50 people, among them 17 children. By the end of April, over 4,824 livestock had been lost, 27,717 acres
of croplands damaged with 264 small businesses and 24 schools adversely affected. Schools and
businesses remained closed across the country (OCHA. 2024). Several main roads were rendered
impassable. The floods also destroyed about 60 health facilities across 11 counties. In the same month,

very heavy rainfall was recorded in Nairobi and the Central parts of Kenya, with the Kenya
Meteorological Department issuing heavy rainfall advisories on the 1st, 13th and 18th (KMD, 2024; The
Star, 2024). These downpours caused serious flooding, especially near riparian areas and also downstream
of River Athi and River Tana; the Seven Forks dams overflowed, exacerbating the dire situation in
Garissa and Tana river Counties also referred to as lower Tana basin. In the western part of the country the

Yala river in the Yala basin broke its banks and caused massive flooding in the basin, while it was also
reported that the backflow from Lake Victoria caused flooding in lower Nzoia which comprises Bunyala
sub county. Heavy rainfall is expected to persist throughout May (KMD. 2024; Kenvyans, 2024).

In Tanzania, weeks of rainfall in March and April resulted in 155 human deaths and a further 200,000
adversely affected, as well as massive damage, with floods sweeping away houses, roads, bridges,
schools, and farmland (CBS News. 2024; AP. 2024). The regions highly impacted by the heavy rains
include the coastal region and the capital Dar es Salaam, mountain regions of Hanang in northern
Tanzania and along Rufiji river and the islands of Zanzibar and Pemba (TMA. 2024; [FRC. 2024; BBC,
2024). Tanzania Meteorological Authority (TMA) continued to issue advisory alerts of possible storm

surge and heavy rainfall along the coast and the Island regions as Tropical Cyclone Hidaya progressed
towards their coast (TMA, 2024). Hidaya made landfall on Tanzania’s coastline on May 4, 2024, with
high rainfall recorded in Mtwara, Lindi, and Morogoro regions (EastAfrican, 2024). In Burundi, more
than 96,000 people had been displaced by floods by the end of April (Al Jazeera, 2024). The most
affected regions were areas around Lake Tanganyika, including the capital Bujumbura (Africanews

2024). IOM (International Organization for Migration) supported relocation of people to safer and higher
ground areas and distributed emergency goods like blankets, cooking utensils, solar lamps, and safety kits
to more than 5,000 people (IOM. 2024).

1.1 Event Definition
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The impacted areas were affected by a series of heavy rainfall events, rather than a single heavy
downpour. This is typical of the long rains: the temporal distribution of rainfall in MAM generally
comprises successive 5-day to 10-day wet spells, punctuated by dry spells (e.g. Camberlin & Okoola,
2003). We therefore look at the maximum accumulated rainfall over a 30-day period (RX30day) during
the months of March-May, averaged over a large region that covers the flooded areas around Lakes

Victoria and Tanganyika, in the Central Highlands of Kenya, and in low-lying and coastal Tanzania
(outlined in red in Figure 1.1). We note that at the time of writing, data were only available until the end
of April 2024, and therefore the wettest 30-day period in 2024 was identified on this basis, although the
heavy rain is expected to continue during May. In four of the datasets, the period from March 27th-April
25th (plus one day on either side) is identified as the wettest 30-day period; in MSWEP the wettest period
in this region ended on April 21st. All of the gridded data products considered show similar spatial
patterns, with very high rainfall accumulations over the central highlands and southeast Tanzania in
particular.

Wettest 30-day period during April-May 2024
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Figure 1.1: Map of accumulated precipitation during the wettest 30-day period over the study region (outlined in
red) during April-May 2024, in five different gridded data products: (a) CHIRPS; (b) CPC; (c) ERAS5; (d) MSWEP;
(e) TAMSAT.

1.2 Drivers of the Long Rains

Precipitation over East Africa is characterised by high seasonal and interannual variability, driven by
various local and remote factors. Equatorial East Africa experiences a bimodal rainfall distribution: the
main rainfall season, ‘long rains’ occurs in March-April-May (MAM) while the ‘short rains’ season
occurs in October-November-December (OND). Seasonal rainfall is controlled by the position and
movement of the Intertropical Convergence zone (ITCZ) at the equator as it transitions between 15°N and
15°S. The three main moisture sources for rainfall are Lake Victoria, Indian Ocean, and the humid layer
of the Congo air mass. Rainfall variability is modulated by the interaction between the ITCZ and
perturbations in the global and regional circulation, as well as changes in mesoscale systems initiated by
land surface heterogeneity induced by vegetation characteristics, large lakes and topography. The
contrasting topographical settings in the region induce widespread dynamic effects and sub-synoptic
disturbances through mesoscale circulation systems. Notably, the highlands perturb uniform flow and
create rain shadows as they block the flow of moist air mass either from the Congo basin or the Indian
Ocean (Ogwang et al., 2014). Mesoscale flows form a coupling between Lake Victoria and the

surrounding mountains, leading to storm formation on highland regions during the afternoon, and over the
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lake at night as a result of lake-land thermal contrast (land and sea breezes) (Chamberlain et al.. 2014;
Dyer and Washington, 2021; Thiery et al., 2016). Large-scale synoptic conditions in MAM are largely

governed by the interplay of pressure differences in the sub-tropical high-pressure systems. Changes in
sea level pressure over the Indian and Atlantic oceans control the zonal advection of moisture across the
region. The presence of tropical cyclones in the southwest Indian Ocean have been associated with
enhanced anomalous westerly flow over many parts of Eastern Africa (Kebacho, 2022). The influence of
tropical cyclones on the region's weather depends on their relative position and intensity. Generally, they
tend to interfere with the normal easterly low-level flow of winds. In MAM 2018, for instance, the
anomalous cyclonic circulation observed over the southwest Indian Ocean with a corresponding
strengthened St. Helena High was a significant feature of the widespread lower tropospheric westerlies
across East Africa (Kilavi et al., 2018; Finney et al., 2019). Westerly flow favours the influx of moisture
from both the Congo basin, and the push and positioning of the meridional arm of the ITCZ over East
Africa. Other drivers for MAM rainfall are Madden Julian Oscillation and the Indian Ocean Dipole
(IOD). Most studies link MJO to intra-seasonal spells of enhanced or suppressed MAM rainfall in East
Africa, depending on the MJO phase. Years of high MJO amplitude (phases 2—4) are characterised by

earlier onsets and higher seasonal amounts (Pohl & Camberlin, 2006). MJO was found to be in an active
phase (with the main centre of enhanced convection concentrated over the western Indian Ocean) during
the high rainfall events of 1981, 1990, 1997, 2010, 2013, 2016 and 2018 (Philippon et al. 2015; Kilavi et
al., 2018). Warmer sea surface temperature (SST) anomalies in the western Indian Ocean, partially
controlled by the 10D, is known to contribute to enhanced MAM rains in equatorial Eastern Africa

(Velinga et al.. 2018). Under climate change and global warming, more variability and extremism in east

Africa’s rainfall patterns is expected (Ogega et al., 2023, Gebrechorkos et al., 2023).

1.3 Effect of climate change on the region and the East African climate paradox

Kimutai et al. (2022) conducted a study to investigate the impact of human-induced climate change on the
intensity of heavy precipitation events during March-April-May in 2012, 2016, and 2018 over different
regions in Kenya. Using three distinct experiments with independent event-attribution methodologies, the

study found a potential emerging signal of human influence on increased rainfall events. However, this
influence cannot yet be definitively attributed to human-induced climate change.

Observations and model projections over East Africa have been known to disagree, with observations
showing a drying, especially from the mid-1990s to the first decade of 21st century, and projections

showing a wettening trend, described as the “East Africa Paradox” (Rowell et al.. 2015). Studies have
explored some hypotheses to explain this phenomenon. Tierney et al. (2015) argued that the projected
increase in rainfall mainly occurs during the short rains (OND) season and not much in the MAM season,

in response to large-scale weakening of the Walker circulation and simulated El-Nifio-like shifts majorly
occurring during the short rains. Giannini et al. (2018) argued that the substantial biases in simulations of

the regional climate, and discrepancy in the modelled versus observed tropical Pacific and Indian SST
trends limits the confidence and reliance in projections of future increase in rainfall in East Africa. The
study shows that it is unclear whether the current cooling of the tropical eastern Pacific is due to internal
variability alone or partly attributable to evolving La Nifia-like conditions due to increasing GHGs in the
atmosphere. They pointed out the limitation of models in simulating rainfall associated with the complex
mesocycle process influenced by East African topography in advection of moisture from the Indian Ocean
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and Congo Basin. Similarly, Batt¢ & Déqué (2011) agrees that the paradox can partly be explained by a
limited understanding of the complexity of the interactions between local, regional, and large-scale
processes in the regions making model simulations less robust compared to other regions like extra
tropics. Wainwright et al. (2019) shows that more recently the paradox has been associated with shorter

rather than less intense rains in the MAM season, with the drying driven by SST and pressure gradient
anomalies over the Arabian seas. Overall, the mechanisms that drive the paradox remain unclear.
However, observations show a recovery in the drying trend from around 2010.

On future projections, the IPCC 6th Assessment report (IPCC. 2021) concludes that heavy rainfall is
projected to increase over Eastern Africa but with considerable variability between seasons and models

used. In north-east and central east Africa, extreme precipitation intensity is projected to increase across
CMIPS5, CMIP6 and CORDEX-CORE (high confidence) in most areas annually but for the long rains in
particular, trends only emerge with high warming levels (Seneviratne et al., 2021, Ongoma et al., 2017).

2 Data and methods

2.1 Observational data
We utilise five daily gridded observational datasets:

(i) CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data; Funk et al.. 2015b), a daily
dataset developed by the UC Santa Barbara Climate Hazards Group, incorporating satellite data, infrared
Cold Cloud Duration (CCD) estimates and blended station data. Daily data are available from
1981-present at 0.05° resolution from 60S to 60N.

(i1) The CPC Global Unified Daily Gridded data, which covers the globe at 0.5° resolution, for the period
1979-present. Data are available from NOAA.

(iii)) The ERAS reanalysis product (Hersbach et al., 2020) produced by the European Centre for
Medium-Range Weather Forecasts. This product covers the globe at 0.25° resolution, starting in 1950.

The variables from ERAS are not directly assimilated, but are generated by atmospheric components of
the Integrated Forecast System (IFS) modelling system. Reanalysis data is available until the end of April
2024.

(iv) MSWEP (Multi-Source Weighted-Ensemble Precipitation) v2.8 dataset (updated from Beck et al.
2019), which combines gauge, satellite, and reanalysis-based data. Data is available at 3-hourly intervals

from 1979 to ~3 hours from real-time, and at 0.1° spatial resolution globally. Daily-resolution data is used
in this study.

(v) TAMSAT (Tropical Applications of Meteorology using SATellite and ground based observations,
Maidment et al., 2017), a daily rainfall dataset based on using high-resolution thermal-infrared
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observations to identify precipitating clouds. Daily rainfall data are available at 0.0375° x 0.0375° spatial
resolution over the African continent from 1983 to the present.

As a measure of anthropogenic climate change, we use the (low-pass filtered) global mean surface
temperature (GMST), where GMST is taken from the National Aeronautics and Space Administration
(NASA) Goddard Institute for Space Science (GISS) surface temperature analysis (GISTEMP, Hansen et
al.. 2010 and Lenssen et al., 2019).

The detrended Nino3.4 index is computed from NOAA’s ERSST v.5 sea surface temperatures, by
subtracting the mean tropical SST (20S-20N) from the mean SST over the Nino3.4 region (5S-5N,
170W-120W) (van_Oldenborgh et al.. 2021). Time series of the observed IOD derived from the ERSST
dataset were obtained from KNMI’s Climate Explorer tool).

2.2 Model and experiment descriptions

We use three multi-model ensembles from climate modelling experiments using different framings (Philip
et al., 2020): High-resolution sea surface temperature (SST)-driven global circulation models, regional
climate models, and low-resolution coupled global circulation models.

1. HighResMIP SST-forced model ensemble (Haarsma et al.. 2016), which spans from 1950 to
2050. The SST and sea ice forcings for the period 1950-2014 are obtained from the 0.25° x 0.25°
Hadley Centre Global Sea Ice and Sea Surface Temperature dataset that have undergone
area-weighted regridding to match the climate model resolution. For the ‘future’ time period
(2015-2050), SST/sea-ice data are derived from RCP8.5 (CMIPS) data, and combined with
greenhouse gas forcings from SSP5-8.5 (CMIP6) simulations (see Section 3.3 of Haarsma et al.
2016 for further details).

2. Coordinated Regional Climate Downscaling Experiment (CORDEX)-Africa Domain
(AFR-CORDEX) with 0.44° resolution (Giorgi et al.. 2009; Nikulin et al., 2012) comprising 11
simulations resulting from pairings of Global Climate Models (GCMs) and Regional Climate
Models (RCMs). These simulations are composed of historical simulations from 1950 up to 2005,
and extended to the year 2100 using the RCP8.5 scenario.

3. We use 17 simulations from the CMIP6 ensemble (Eyring et al., 2016). For all simulations, the
period 1850 to 2015 is based on historical simulations, while the SSP5-8.5 scenario is used for the

remainder of the 21st century.

2.3 Statistical methods

Methods for observational and model analysis and for model evaluation and synthesis are used according
to the World Weather Attribution Protocol, described in Philip et al.. (2020), with supporting details found
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in van Oldenborgh et al.. (2021), Ciavarella et al.. (2021) and here. The key steps, presented in sections

3-6, are: (3) trend estimation from observations; (4) model validation; (5) multi-method multi-model
attribution; and (6) synthesis of the attribution statement.

In this report we analyse time series of March-May maxima of 30-day accumulated precipitation
(RX30day) over the study region outlined in Figure 1.1; precipitation is averaged over the region before
the 30-day maxima are identified.

A nonstationary generalised extreme value (GEV) distribution is used to model the variable. The
distribution is assumed to scale exponentially with the global mean surface temperature (GMST), with the
dispersion (the ratio between the standard deviation and the mean) remaining constant over time. The
parameters of the statistical model are estimated using maximum likelihood. For each time series we
calculate the return periods, probability ratio (PR; the factor-change in the event's probability) and change
in intensity of the event under study for the 2024 GMST and for 1.2C cooler GMST: this allows us to
compare the climate of now and of the preindustrial past (1850-1900, based on the Global Warming
Index).

3. Observational analysis

3.1 Analysis of gridded data

Figure 3.1 shows the time series of MAM RX30day over the study region in each of the five gridded data
products listed in Section 2.1. All of the data products exhibit similar behaviour over this region: stable or
slowly decreasing rainfall prior to the mid-1990s, followed by a rapid decline from around 1997-2008 and
a period of low rainfall with low interannual variability (shaded in yellow), and recovery thereafter. This
observed pattern is part of a phenomenon known as the East African Paradox (Rowell et al., 2015). While

the Paradox is usually defined with reference to the MAM season as a whole, and is not expected to affect
the intensity of short-duration rainfall over the region, the effect on the accumulated precipitation during
the wettest month of the season is clear in Figure 3.1. This phenomenon is observed across all parts of the
study region and in all of the gridded data products tested (Figures A1-A2). The nature of the trend prior
to this decline is not clear due to the short length of most of the available time series; although the longer
ERAS dataset shows a decrease in RX30day since 1950, reanalysis has been shown to be unreliable prior

to the satellite era for precipitation in this region (Nicholson & Klotter, 2021).

Without a full understanding (and therefore a statistical model) of the dynamical mechanisms behind the
decline and subsequent recovery of MAM precipitation in this region, it is not currently possible to isolate
and identify the effect of climate change on the accumulated rainfall in this region.
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Figure 3.1: Time series of MAM RX30day over the study region in five gridded data products: (a) CHIRPS; (b)
CPC; (c) ERAS; (d) MSWEP; (e) TAMSAT. The thick black line is a loess (local regression) curve; the dark red line
is a 15-year rolling mean. The shaded region indicates the period from 1997-2008.

3.2 Influence of modes of natural variability

The El-Nifio Southern Oscillation (ENSO) is known to play a part in precipitation in this region at certain
times of the year. Figure 3.2 plots the RX30day values against the detrended Nifio3.4 index (see Section
2.1) averaged over the preceding December-February period, an index chosen to capture the extrema of
the ENSO in a typical year. While we do not perform any formal statistical tests due to the difficulty of
building a reliable statistical model for this data as described above, a line of best fit indicates that lower
RX30day precipitation is expected following a positive ENSO phase: we therefore conclude that it is
unlikely that the current declining El Nifio phase enhanced the heavy rainfall in this region in recent
weeks. Similarly, Figure 3.3 shows the RX30day values against the MAM mean of the Indian Ocean
Dipole (IOD); the relationship between the two is very weak (e.g. Palmer et. al.. 2023), with positive IOD
states associated with slightly lower values of RX30day, and there is no evidence that the current IOD
state enhanced the heavy rainfall.
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Figure 3.2: Plot of MAM RX30day over the study region in five gridded data products against detrended Niiio3.4
index averaged over the preceding December-February: (a) CHIRPS; (b) CPC; (c) ERAS; (d) MSWEP; (e)
TAMSAT. The pink marker indicates the 2024 event; the blue line is the line of least-squares best fit.
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Figure 3.3: Plot of MAM RX30day over the study region in five gridded data products against IOD index averaged
over March-May: (a) CHIRPS; (b) CPC; (c) ERAS5; (d) MSWEP; (e) TAMSAT. The pink marker indicates the 2024
event; the blue line is the line of least-squares best fit.
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4 Model evaluation

The second step in the WWA protocol is to evaluate climate models to understand how well they are able
to replicate the observed distribution of precipitation in the region of interest, in order to select models to
include in the overall synthesis of the results. Typically, the climate models are evaluated against the
gridded observational data products for their ability to capture the distribution of the variable of interest
(here, RX30day). However, because of the difficulty of fitting a statistical model to the observed trends in
30-day accumulated precipitation in this region, this step of the evaluation cannot be carried out. Models
are evaluated in terms of how well they represent the spatial and seasonal patterns of MAM precipitation
over the region. In addition, for the HighResMIP ensemble only, which is driven by observed SSTs prior
to 2015, we note whether the model exhibits the expected dip in rainfall from 1997-2008 (labelled ‘EAP
decline’ in the table); plots of the associated time series are shown in Figure A3 in the Appendix. Almost
half of the HighResMIP runs evaluated display a similar drying to that seen in the observations. In the
tables below we show the results of this model evaluation. If the model is ‘good’ for all criteria, we give it
an overall rating of ‘good’. We rate the model as ‘reasonable’ or ‘bad’, if it is rated ‘reasonable’ or ‘bad’,
respectively, for at least one criterion. For each collection of runs, if more than five models achieve a
‘good’ evaluation overall, then only these models are included in the attribution; if five models or fewer
achieve this, then models deemed ‘reasonable’ are also included. Most of the HighResMIP models were
evaluated as capturing the seasonal cycle and spatial pattern of MAM precipitation well over this region
(Figures A4-AS), but the regional models tended to underestimate the MAM seasonal peak and generally
did not reflect the observed spatial distribution of precipitation (Figures A6-A7). The lower-resolution
CMIP6 models are unable to capture the topographic variations in the region, but most tend to capture the
bimodal seasonality (Figures A8-A9). As a result, models deemed ‘good’ or ‘reasonable’ were included in
the final analysis. Where more than one version of the same model passed the evaluation, only the
highest-resolution realisation was retained for the synthesis.

Table 4.1: Evaluation of the HighResMIP models considered for attribution of R30day-MAM over the study region.
For each model, we evaluate whether the models accurately reflect the seasonal cycle and spatial pattern of MAM
precipitation in this region; for HighResMIP, we also assess whether the decline in MAM precipitation in the early
21st century is represented. The overall evaluation is shown in the right-hand column.

Models Seasonal cycle |Spatial pattern |EAP decline? Conclusion
CMCC-CM2-HR4 good good n good
CMCC-CM2-VHR4 good good y good
EC-Earth3P-HR good good y good
EC-Earth3P good good y good
FGOALS-f3-H good good y good
FGOALS-f3-L reasonable good n reasonable
HadGEM3-GC31-HM good good y good
HadGEM3-GC31-LM good bad y bad




HadGEM3-GC31-MM good good y good
HiRAM-SIT-HR good good y good
HiIRAM-SIT-LR good good y good
MPI-ESM1-2-HR good bad n bad
MPI-ESM1-2-XR good bad n bad
MRI-AGCM3-2-H good good y good
MRI-AGCM3-2-S good bad n bad
NICAM16-7S good reasonable n reasonable
NICAM16-8S good reasonable n reasonable

Table 4.2: Evaluation of the CORDEX AFR-44 models considered for attribution of R30day-MAM over the study
region. For each model, we evaluate whether the models accurately reflect the seasonal cycle and spatial pattern of
MAM precipitation in this region. The overall evaluation is shown in the right-hand column.

Models Seasonal cycle |Spatial pattern |Conclusion
CanESM2_CanRCM4 bad reasonable bad
CanESM2_RCA4 reasonable bad bad
CNRM-CM5_CCLM4-8-17 bad reasonable bad
CNRM-CM5_RCA4 bad bad bad
CSIRO-Mk3-6-0_RCA4 good bad bad
EC-EARTH_RACMO22T reasonable reasonable reasonable
EC-EARTH_RCA4 bad bad bad
GFDL-ESM2M_RCA4 bad bad bad
HadGEM2-ES_CCLM4-8-17 |bad reasonable bad
HadGEM2-ES_RACMO22T |reasonable bad bad
HadGEM2-ES_RCA4 reasonable bad bad
IPSL-CM5A-MR_RCA4 good bad bad
MIROC5_RCA4 good bad bad
MPI-ESM-LR_CCLM4-8-17 bad reasonable bad
MPI-ESM-LR_RCA4 good bad bad
MPI-ESM-LR_REMO2009 good reasonable reasonable
NorESM1-M_RCA4 good bad bad

Table 4.3: Evaluation of the CMIP6 models considered for attribution of R30day-MAM over the study region. For
each model, we evaluate whether the models accurately reflect the seasonal cycle and spatial pattern of MAM

precipitation in this region. The overall evaluation is shown in the right-hand column.

Models Seasonal cycle |Spatial pattern Conclusion Note
ACCESS-CM2_r1i1p1f1 bad reasonable bad
ACCESS-ESM1-5_r1i1p1f1 bad reasonable bad
CanESM5_r1i1p1f1 reasonable reasonable reasonable




CMCC-ESM2_r1i1p1f1 reasonable reasonable reasonable

CNRM-CM6-1_r1i1p1f2 reasonable reasonable reasonable Only HR version included in synthesis
CNRM-CM6-1-HR_r1i1p1f2 reasonable reasonable reasonable

EC-Earth3_r1i1p1f1 bad good bad

EC-Earth3-Veg_r1i1p1f1 bad good bad

EC-Earth3-Veg-LR_r1i1p1f1 bad good bad

FGOALS-g3_r1i1p1f1 bad bad bad

INM-CM4-8_r1i1p1f1 reasonable reasonable reasonable

INM-CM5-0_r1i1p1f1 good reasonable reasonable

IPSL-CM6BA-LR_r1i1p1f1 good reasonable reasonable

MIROC6_r1i1p1f1 reasonable bad bad

MPI-ESM1-2-HR_r1i1p1f1 bad reasonable bad

MPI-ESM1-2-LR_r1i1p1f1 bad reasonable bad

MRI-ESM2-0_r1i1p1f1 bad reasonable bad

NorESM2-LM_r1i1p1f1 good reasonable reasonable Only MM version included in synthesis
NorESM2-MM_r1i1p1f1 good reasonable reasonable

TaiESM1_r1i1p1f1 bad bad bad

5 Multi-method multi-model attribution

As discussed above, the dynamically-driven change in the distribution of RX30day in the study region
makes it impossible to fit a statistical distribution to either the observations or the SST-driven
HighResMIP runs, which exhibit the same behaviour. However, we do not expect this phenomenon to
occur in coupled climate models, and so we fit a nonstationary GEV to the climate model data following
the standard WWA protocol (Section 2.3) in order to understand the simulated trends in RX30day in the
study region. Table 5.1 shows probability ratios (PR) and relative changes in intensity (Al) for those
models that passed the evaluation described in Section 4, for a moderately extreme 10-year event.

Table 5.1: Event magnitude, probability ratio and change in intensity for 10-year RX30day over the study region for
each model that passed evaluation: (a) from the preindustrial climate to the present and (b) from the present to 2°C
above pre industrial temperatures.

(a) -1.2C vs present (b) Present vs +0.8C
Model 10-year event Probal')ility . Chal}ge in Probal.)ility . Chal.lge in

(mm) ratio intensity (%) ratio intensity (%)
EC-EARTH RACMO22T 165 1.4(0.47..5.0) | 2.8(-6.6...13) | 1.3(0.84...2.0) | 2.1(-1.4..5.5)
MPI-ESM-LR_REMO2009 152 0.35(0.11 ...0.87) | -13(-23 ... -1.8) ] 0.62 (0.30 ... 0.94) | -5.6 (-11 ... -0.8)
CanESMS5 rlilplfl 301 33(1.6..7.4) 11 (3.0 ... 20) 1.8(1.6...2.1) 7.0(4.5...9.3)
CMCC-ESM2 _rlilplfl 237 33(1.6...11) 11 (4.4 ..18) 1.6(1.2...2.3) 472.1..7.8)
CNRM-CM6-1-HR rlilplf2 173 0.88(0.23...1.9) | -1.4(-11...8.8) | 1.0(0.68...1.3) |0.57(-3.6...4.2)




INM-CM4-8 rlilplfl 327 4.6(1.7...15) 11 (33...19) 1.7(12..23) | 3.7(1.1..62)
INM-CM5-0_rlilplfl 311 3.7(1.7..9.5) 15(3.9..26) | 20(1.6..25) | 88(55..12)
IPSL-CM6A-LR _rlilplfl 270 1.6(0.76 ...3.4) | 3.5(-18..93) | 14(1.1..1.7) |23(0.64..4.1)
NorESM2-MM rlilplfl 273 1.7(0.53...8.9) | 53(-4.6..21) | 1.5(0.93..2.0) |4.3(-0.68...8.8)
6 Hazard synthesis

As discussed above, it is not currently feasible to evaluate the long-term influence of anthropogenic
climate change on RX30day during the MAM Long Rains, due to the effect of dynamical drivers that are
not easily captured in a statistical model. However, given the fact that an increase in the intensity of
RX30day has been observed in recent decades (Section 3.1), it is useful to understand whether climate
models consistently project a wetting or drying trend in the future. While we do not expect coupled
models to represent the drier period if it was dynamically driven as discussed in Section 1.2, these models
should nevertheless show a wettening trend if the wettening observed in the last 15 years is, in part,
driven by human-induced climate change. The SST-driven HighResMIP runs exhibit similar behaviour to
the observations (Figure A3). This means they cannot be used in trend evaluation although they represent
spatial and seasonal patterns of precipitation in this region well. This corroborates the hypothesis that the
drying at the end of the 20th century and up to 2008 is indeed driven by the specific SST patterns. As
expected, the short-term decline does not appear in the CORDEX and CMIP6 coupled runs, which are not
constrained by observed SST patterns. For these model runs it is therefore reasonable to fit a linear model
that depends on the GMST of the driving GCM as described in Section 2.3,, to investigate whether there
is any evidence of a trend in RX30day during the MAM rains in this region, in the past as well as under
future warming.

We show the results of this in the red bars in Figures 6.1 (for the change from the preindustrial climate to
present day) and 6.2 (for the further projected change from the present day to the future). The estimated
change in likelihood of what is currently a 1-in-10-year event, and the relative change in intensity of a
1-in-10-year event, are shown for each model that passed model evaluation. The best estimate for each
model is marked with a black triangle. A term to account for intermodel spread is added in quadrature to
the natural variability of the models: this is shown in the figures as white boxes around the light red bars.
The dark red bar shows the model average, consisting of a weighted mean using the (uncorrelated)
uncertainties due to natural variability plus the term representing intermodel spread (the white bars). The
majority of the models indicate a wetting trend in this region, with only one of the nine indicating a
significant drying trend. The weighted mean (dark red box) indicates an overall wetting trend, although it
is not statistically significant: similar events are estimated to be around twice as likely now as in
preindustrial times (95% confidence interval: 0.5 - 7.6 times as likely), and around 5% more intense (95%
confidence interval: 7% less to 20% more intense). In a world with an additional 0.8°C of warming,
similar events are estimated to be 1.4 times more likely than in the current climate (95% confidence
interval: 0.8 - 2.6 times as likely) and 3% more intense (95% confidence interval: 4% less to 11% more
intense). While these results are not statistically significant, we note that the wetting trend in this region is
simulated fairly consistently by the CMIP6 models (Figure A10).
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Figure 6.1: Synthesis of (a) probability ratios and (b) relative intensity changes of RX30day over the study region in
the 2024 climate and a 1.2°C cooler climate, for all models that were judged ‘reasonable’ or ‘good’ in the model
evaluation step. Details of how to interpret the synthesis plots are given in the text.
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Figure 6.2: Synthesis of (a) probability ratios and (b) relative intensity changes of RX30day over the study region in
the 2023 climate and a 0.8°C warmer climate, for all models that were judged ‘reasonable’ or ‘good’ in the model
evaluation step. Details of how to interpret the synthesis plots are given in the text.

While we cannot follow the usual WWA protocol to combine observations and models into an
overarching attribution statement, these results indicate that the observed increase in the last 15 years is at
least in part driven by anthropogenic climate change and thus should be expected to continue to intensify
with future warming. This is furthermore consistent with what is expected in a warming climate through
the Clausius-Clapeyron relationship, which predicts more rainfall during the kind of short, intense
episodes that characterise the MAM rainy season (O’Gorman, 2015).

7 Vulnerability and exposure

Reviewing the factors that drive vulnerability and exposure (V&E) is crucial for understanding the
impacts of the 2024 MAM floods in Kenya, Tanzania, and Burundi. The floods, characterised by intense


https://link.springer.com/article/10.1007/s40641-015-0009-3

and prolonged rainfall, triggered cascading hazards such as landslides and soil saturation, severely
impacting communities already grappling with the losses and damages from previous extreme weather
events. The timing of these floods, following the OND floods and coinciding with Cyclone Hidaya, has
strained response resources, diminished adaptive capacities, and eroded infrastructure.

Natural hazards, including extreme rainfall and drought, are increasing in frequency and intensity in the
region (Kimutai et al., 2023), compounding impacts and increasing the vulnerability of individuals reliant
on weather-dependent livelihoods (Weingértner et al., 2022; Thalheimer et al., 2023). Beyond pastoralists,
older adults (older women in particular) and the poor, marginalised, displaced and facing homelessness,

are disproportionately affected (Omolo & Mafongova, 2019; Bezgrebelna et al., 2023; Walters &
Gaillard, 2014). Floods can also be drivers of poverty, as a poverty trap is created when people and

communities with limited financial means face barriers to adequately recover from (compounding)
economic disruptions, losses, and damages (Sherwood. 2013).

7.1 Land use management

In Kenya, Tanzania, and Burundi, there have been changes in land use and land cover over the past
decades that likely had an impact on flood risks.

In Kenya, a drastic reduction in forest cover has been observed over the past two decades, with a 14%
average decline from 2002 to 2022, and up to 39% in areas like Narok (Global Forest Watch, 2022a;
Umukiza et al., 2021). The loss of forests, which have a high infiltration rate (89.1 cm/h), compared to
agricultural land (15 cm/h) and rangeland (7.9 cm/h), has led to increased surface runoff and higher peak
river discharges, from 167 m?*/sec to 233 m?*/sec, thus elevating flood risks (Mireille et al., 2019; Barasa &
Perera, 2018). Although Kenya has implemented a logging ban since 2018 and launched the REDD+
strategy to mitigate deforestation, the impact of these measures on reversing flood risks remains limited
(Natural Justice, 2023; Republic of Kenya, 2020). Kenya is currently implementing a tree cover plan of at
least 30% by 2032 by growing 15 billion trees, with a target of 1 million trees annually (MEFCC. 2024).

Tanzania has similarly faced severe deforestation, losing approximately 19.4% of its forest cover between
1990 and 2010, amounting to around 8 million hectares (Project Gaia, 2015). The annual deforestation

rate of 1%, driven by charcoal production, shifting cultivation, and rapid population growth, exacerbates
the vulnerability to floods due to reduced land absorption capacity (Tremblay & Lowry, 2016). Studies
indicate that the loss of vegetation cover and wetland degradation has led to increased peak flows and

flood magnitudes, particularly in urban areas like Dar es Salaam (Mzava et al.. 2021; Mfwango et al.,
2022). Despite Tanzania's participation in REDD+ and the implementation of sustainable forest

management policies, deforestation continues due to inadequate inter-sectoral coordination and the
socio-economic drivers, notably poverty and limited livelihood options, underlying land use changes

(Doggart et al.. 2020; Lund et al.. 2016).

Burundi presents a particularly acute case of deforestation, with only 6.6% of its original forest cover
remaining as of 2022 (Global Nature Fund, n.d.). The country experienced the highest deforestation rates

globally in the 1990s, driven by agricultural expansion, fuelwood collection, and civil conflict
(Ndanezerewe, 2022; Hobbs & Knausenberger, 2003). The conversion of hillsides and wetlands for
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agriculture without proper erosion control has led to soil erosion and increased flood frequency (World
Bank, 2018). Efforts to address deforestation, such as the national reforestation program and improved
cooking stoves, are underway but are challenged by high population pressure and the need for sustainable
livelihood alternatives (UNEP, n.d.; Global Nature Fund, n.d.).

Overall, the increase in flood risk in these countries is closely linked to land use changes that have
diminished natural vegetation cover and disrupted water retention functions. Effective mitigation requires
comprehensive policies that integrate sustainable land management practices and address the
socio-economic drivers of deforestation.

7.2 Urban planning and informality

East Africa has some of the fastest urbanisation rates worldwide (African Development Bank, 2022).
During the current and widespread floods, every capital in Ethiopia, Somalia, Kenya, Tanzania and the
economic capital in Burundi has been flooded, causing deaths, displacement, destruction of critical
infrastructure and widespread concern of spreading infectious diseases (The Guardian. 2024; ECHO
2024; UN OCHA., 2024; Arabnew, 2024; Borkena, 2024; Bloomberg, 2024). All countries show stark
increases in the number of people living in urban areas, with extremely high annual growth rates. Rapid
and unplanned urbanisation often goes hand in hand with the formation of informal settlements, often in
marginalised and hazard prone land, (UN_Habitat, 2023; UN Habitat, 2023; UN Habitat, 2023; UN
Habitat, 2023), increasing the risk of floods turning into disasters. (Raju. Boyd & Oftto, 2022,
Alcantata-Ayvala et al., 2022) Informal settlements expand into hazard prone areas, as highlighted in
Kibera, Mukuru, and Mathare in Nairobi, Kenya. In Kibera, more than 200.000 people live within 30
metre proximity to water bodies and in 2015 already more than 50% of Kibera residents were impacted by
heavy precipitation (UNFCCC, 2023; Weingértner et al., 2019; Galvin & Maassen, 2021). In Mukuru,
houses along water-ways were demolished following a 48-hr evacuation order issued by the government
in effort to prevent further deaths from flooding (CitizenTV. 2024). Populations in informal settlements

throughout the study area are particularly vulnerable to flooding due to a combination of external factors
such as inadequate road infrastructure, land tenure, housing infrastructure, access barriers to potable water
services (proximity and cost), location (in flood-prone areas like riparian, wetlands etc), drainage systems,
and limited access to health systems. A number of the most affected areas in this study are also located in
marginalised land alongside urban rivers and flood evacuation channels that overflow (New York Times,

2024; Owour & Mwiturubani, 2021; Zerbo, Deglgado & Gonzéles, 2020). These spaces are often

neglected and do not fall within formal governance structures. While neglect is what in part enables their

existence, and tenuous or marginalised land tenure can help leave residents alone instead of evicted, the
limited access to basic services often increases flood risk. For instance, an analysis of Bujumbura
(Burundi), shows that some settlements of the city are lacking drainage systems, while existing older
drainage systems are often clogged and not well-maintained (Nsabimana et al.. 2023). Flooding in

informal settlements can also have widespread impacts on business within informal settlements, often part
of the informal economy and less protected from hazard shocks (Satterthwaite et al., 2018).

Dar es Salaam’s geomorphology, a coastal city with four major rivers (Mpiji, Rufiji, Msimbazi, Kizinga
and Mzinga) emptying into the Indian Ocean, makes it highly prone to flooding. March-April-May is the
peak rainy season with flooding occuring on a near annual basis. The rapid, unplanned growth of the city
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exacerbates flood risks, especially for those living on marginalised land in informal settlements. Solid
waste management is another challenge in Dar es Salaam, as well as other cities in this study area, that
leads to blocked drainage systems which further exacerbate flooding (Sakijege & Dakyaga, 2022).

Country differences are large, with 50.81% of the urban population living in informal settlements in
Kenya, and 36.8% in Burundi (Our World in Data, 2020). While informal settlements are affected
disproportionately, other parts of the different cities are also impacted. Businesses have been shut down or
destroyed. Small scale businesses and many others are still recovering from the pandemic (Schmid, Raju
& Jensen, 2021), making recovery from these floods potentially harder. Further, over 200 schools in
Kenya and 200 classrooms in Burundi, as well as several health facilities, bridges and roads in multiple
countries have been impacted (Al Jazeera, 2024; BBC, 2024; UNOCHA, 2024). Thus, repercussions will
last long after the water disappears. As noted in an earlier attribution study on the area in 2023, multiple
projects from state and non-state actors are ongoing in the region to reduce flood risks (Kimutai et al.

2023). However, despite urban planning efforts, financial constraints and challenges in effective project
enforcement or execution frequently lead to failures (World Bank, 2020).

7.3 Disaster risk management

7.3.1 Flood protection

Flood protection infrastructure and interventions in Kenya, Tanzania, and Burundi demonstrate diverse
approaches tailored to each country's unique challenges and resources.

In Kenya, the Kenya Water Security and Climate Resilience Program has significantly bolstered flood
mitigation efforts, particularly in flood-prone counties such as Busia and Siaya. The National Water
Storage Authority has commissioned various flood control projects (like building of dykes) along major
rivers prone to floods to improve the drainage capability of various rivers and impound the flow within
the floodplain and river channels (NWSA., 2024). Additionally, Flood Control International has
introduced advanced flood prevention measures, including flood barriers, gates, and doors, to protect
critical infrastructure like airports and water treatment plants (Flood Control International, n.d.). Regular

clean-up campaigns across informal settlements further help to clear drains and avert blockages that could
precipitate flooding (Gullet, 2016).

Tanzania has employed a range of structural interventions to mitigate flood risks. The installation of
gabions and concrete blocks along major rivers like the Mzase and Maswala has been crucial in
preventing erosion (Ministry of Transport, 2016). River training and channel widening have enhanced
water flow capacity, and parts of the Central Railway Line have been rerouted to circumvent flood-prone
areas (Ministry of Transport, 2016). However, urban areas like Dar es Salaam still face significant flood
management challenges due to rapid urbanisation, geomorphology and vulnerable informal settlements,

necessitating ongoing improvements in infrastructure and urban planning (Urban Agenda Platform, n.d.).
Tanzania also has a Disaster Management Act of 2015 which mandates the establishment of disaster

management structures and delineates roles and responsibilities at national, regional/provincial, and local
levels for disaster preparedness, early warning, response, and recovery activities related to all hazards,
including floods (IFRC. 2021).
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Burundi has adopted a comprehensive approach to flood risk management. The development of a
multi-risk mapping and an online platform enables informed decision-making at various administrative
levels (IOM. 2023). Large-scale infrastructure projects, such as the construction and rehabilitation of
drainage systems, bridges, and dams, have been undertaken with active community involvement through

cash-for-work programs (IOM. 2023). Moreover, innovative solutions like portable dams have been

piloted in areas such as Mpanda Commune, offering dual benefits of flood protection and water storage
(UNEP, 2022).

7.3.2 Early Warning Early Action

The intricate web of early warning systems (EWS) and anticipatory action mechanisms for floods in
Kenya, Tanzania, and Burundi aims to mitigate impacts by enhancing preparedness and response
capabilities. For example, the Regional Integrated Multi-Hazard Early Warning System for Africa and
Asia (RIMES), an inter-governmental institution, provides services and capacity building for regional
early warning for weather and climate extremes including flooding (RIMES. n.d.-a; RIMES. n.d.-b;
RIMES. n.d.-c). The IGAD Climate Prediction and Applications Centre (ICPAC), based in Nairobi, also
plays a pivotal role in providing weather and climate advisories for the region, supporting national
initiatives (Ambenje, 2004). The IGAD Regional Roadmap for Anticipatory Action (IRRAA), launched
in 2023, further harmonises these efforts by improving EWS and integrating early action principles across
policies (IGAD. 2023). Moreover, responding to the several hazards and disasters faced by the continent,
the African Union Commission (AUC) is developing the Africa Multi-Hazard Early Warning and Early
Action System (AMHEWAS) Programme which is due for implementation by 2030 (UNDP, 2023).

In Kenya, the Kenya Meteorological Department (KMD) operates the National Flood Forecasting and
Early Warning Centre (NFFEWC) (Kiptum et al., 2023). NFFEWC collects and monitors weather and
climate data through observation networks across Kenya, and generates forecasts, early warnings,
advisories, and alerts to relevant authorities as well as the public (KMD. n.d.). The Kenya Red Cross
Society has developed an Early Action Protocol (EAP) for riverine flooding (Anticipation Hub, 2021).
Anticipatory action includes cash grants, non-food item distribution, and emergency health and water

services (Anticipation Hub, 2023). Additionally, Kenya’s shock-responsive social protection systems,
including the Hunger Safety Net Programme (HSNP), offer financial security to vulnerable populations
during extreme weather events such as floods (HSNP, 2023).

Supported by the UK Meteorological Office, the Tanzania Meteorological Agency (TMA) has developed
a Multi-Hazard Early Warning System (MHEWS) to provide early warnings for hazards including
flooding. The MHEWS integrates advanced climate forecasting, local knowledge, and community
engagement to improve flood prediction and response. This co-produced system enhances resilience and
preparedness by providing timely, accessible (e.g. by color-coding and using pictorial symbols), and
impact-based warnings to relevant government agencies and the public (Roux et al.. 2019, WISER. 2017).

Kenya and Tanzania's Developing Risk Awareness through Joint Action (DARAJA) system provides
flood warnings tailored for informal urban settlements in Nairobi and Dar es Salaam , emphasizing
community involvement and user-centric information dissemination through SMS and public campaigns
(UNDRR. n.d.; World Habitat Awards, 2024). Since 2018, when it launched, DARAJA has provided
improved weather information to about one million people across the two countries (Resurgence, 2024).
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Based on the information, communities have undertaken early actions including repairing roofs and
homes (300% and 122% increases in Nairobi and Dar es Salaam, respectively), cleaning community and
household drains, and moving possessions to places with less flood risk (World Habitat Awards. 2024;
Resurgence, 2024). For reference, while there are no definitive figures, it is estimated that 50-70% of

Nairobi’s (equal to over 2 million people) and up to 75% of Dar es Salaam’s (equal to nearly 5 million
people) populations reside in informal settlements (Ren et al., 2020). Thus, this innovative approach has
made strides to protecting vulnerable residents, however they remain limited. There is an equally urgent
need to address the underlying challenges of growing informal settlements that expand into hazard-prone

areas. For example, in Dar es Salaam, informality is spreading into flood-prone areas, such as Msasani
Bonde la Mpunga (Kemwita et al., 2022).

The flood EWS in Burundi, overseen by the National Meteorological and Hydrological Services
(BHMD), includes two 24-hour synoptic stations, 19 climatological stations, 125 rainfall measurement
sites, andfive automatic weather stations (AWS) (Ntibasharira, n.d.). Ensuring continuous weather

monitoring nationwide, BHMD provides hydrological modeling, weather forecasts, and early warnings
(Ntibasharira, n.d.). The CREWS East Africa Initiative and IOM's efforts to develop multi-hazard early
warning systems further strengthen Burundi’s capacity to respond to flood risks (UNDRR. 2023; IOM.
2024). In Burundi, the EAP for floods, supported by the World Food Programme (WFP) and the Burundi
Red Cross, was activated in October 2023, enabling anticipatory measures such as cash distributions

based on extreme rainfall forecasts (Anticipation Hub. n.d.).

Collectively, these initiatives illustrate a growing emphasis on proactive disaster management, leveraging
forecasting, community engagement, and coordinated response strategies to mitigate flood impacts across
East Africa. Still, city-level EWS for primary and secondary cities could significantly help improve the
protection of growing urban populations by providing localised real-time weather information that takes
into account the diverse, dense, and dynamic character of cities (ELLA, n.d.; Ramalingam & Clarke,
2012). It is important to note that as the climate continues to warm, frequent and intense extreme events,

including flood-inducing rainfall will exacerbate vulnerability and dampen adaptive capacity of many
vulnerable communities across the region. Countries here have been caught in a cycle of debt and crisis
that seems nearly impossible to escape as current national financial frameworks and public budgets
cannot meet the scale of finance required to support the confluence of crises. Furthermore, over the past
few years countries have had to pay more to service record levels of debt; more than one in five emerging
markets and developing countries paid more to service their debt in 2022 than they received in external
financing. This could rise to more than one in three by 2025 (ONE Campaign, 2024). Even with timely
early warnings, adequate preparedness and response capabilities (e.g evacuation to safer and higher
ground) might be limited. Still, financing for climate adaptation is quite uneven and inadequate across the
world; representing only a small fraction of what is needed, e.g., in Africa (Trisos et al., 2022; Savvidou
etal., 2021).

7.3.3 Emergency response

The 2024 floods in Kenya, Tanzania, and Burundi have prompted extensive emergency response efforts
from both governmental and non-governmental organizations. In Kenya, the government established
multi-agency emergency response centers in Nairobi to monitor the flood situation, deploy coordinated
responses, and issue daily alerts (Oruta, 2024). This initiative includes evacuating residents from high-risk
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areas, and providing emergency housing and food assistance. Moreover, the government has already
allocated funding for infrastructure reconstruction (Al Jazeera, 2024). The International Organization for

Migration (IOM), supported by the Government of Japan, is delivering shelter and essential items to
39,000 affected individuals in the most severely impacted regions (IOM, 2024). The KRCS has deployed
Red Cross Action and Community Disaster Response teams to affected counties for search, rescue, and

emergency relief operations, including the provision of shelter, food, and clean water. Amid increased
needs due to heavy rains, KRCS, coordinating with governments, has activated contingency plans to aid
500,000 people, prioritizing vulnerable households across 42 counties (IFRC. 2024). In certain areas,

response efforts have been hindered by the destruction of critical infrastructure such as roads, airstrips,
and bridges (IFRC, 2024a).

In Tanzania, the government has deployed search and rescue services, conducted damage assessments,
and provided comprehensive support, including healthcare, food, water, sanitation, and hygiene (IFRC,
2024b; UNICEF, 2024). By April 21, 2024, 2,882 individuals across five camps had received
humanitarian aid by the government and various humanitarian partners, including food staples and
non-food items like bedding, mosquito nets, and tents. Additional support encompassed mental health
services, education, and child protection (OCHA. 2024).

In Burundi, the government has raised the harbour protection wall to protect Bujumbura's port and
launched construction projects to safeguard critical infrastructure (Manishatse, 2024). Coordination with
UN agencies and the Burundi Red Cross Society (BRCS) has been integral. IOM's efforts include
providing emergency shelter, blankets, and other essentials to over 5,000 people and supporting their
relocation to safer areas (I0M. 2024). Together with IOM, the BRCS has conducted disability monitoring.
It has moreover distributed tents to 100 households in Cibitoke and identified 250 in Bujumbura for
rental support. Volunteers conducted epidemic control, reaching 1,350 people. Hygiene awareness
reached 1,080 households, with 540 sprayed. WASH kits aided 150 households in Bujumbura (IFRC,
2024c).

V&E conclusions

Recurring disasters in East Africa threaten the region’s efforts in ensuring sustainable development. In the
past few years, countries in this region have dealt with the COVID-19 pandemic, as well as multiple
back-to-back flood, and drought episodes, straining their capacity and resources to respond effectively.

The analysis of drivers of flood risks and impacts in Kenya, Tanzania, and Burundi reveals the critical
role of land use management, urban planning, adaptation and disaster risk management. In these East
African nations, deforestation and agricultural expansion have significantly increased flood risks. For
instance, Kenya's 14% forest cover reduction has heightened surface runoff and peak river discharges,
exacerbating flood hazards. Similarly, Tanzania's 19.4% forest loss, driven by charcoal production and
shifting cultivation, reduces land absorption capacity, while Burundi's severe deforestation from
agricultural expansion and civil conflict leads to soil erosion and frequent floods. Comprehensive policies
integrating sustainable land management practices and addressing socio-economic drivers of deforestation
are crucial for mitigating these flood risks.
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Urbanisation compounds these risks, as rapid and unplanned growth in cities like Nairobi and Dar es
Salaam results in vulnerable informal settlements lacking adequate infrastructure, increasing flood
susceptibility. The recurrent flooding in capital cities demonstrates the pressing need for improved urban
planning and resilient infrastructure. There are efforts to mitigate these risks including Kenya's flood
barriers and clean-up campaigns, Tanzania's river training and structural interventions, and Burundi's
comprehensive flood management projects. Despite these measures, financial constraints and
coordination issues persist, undermining effectiveness. Effective urban planning, improved infrastructure,
and targeted interventions in informal settlements are essential for reducing the impact of floods on
vulnerable urban populations.
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Figure Al: Subregions used to check the spatial persistence of the East Africa Paradox. Clockwise from bottom left:
Lake Tanganyika basin; Lake Victoria basin; Central Highlands & river catchments; southeastern Tanzania.
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Figure A2: Time series of MAM RX30day over the study region in the four sub-regions defined in Figure A1, in five
gridded data products. The thick black line is a loess (local regression) curve, the dark red line is a 15-year rolling
mean. The shaded region indicates the period from 1997-2008.
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Figure A3: Time series of MAM RX30day over the study region in seventeen HighResMIP runs. The thick black line
is a loess (local regression) curve fitted to the period covered by the observed time series (1979-2024); the red line
is a 15-year running mean. The shaded region indicates the period from 1997-2008.
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Figure A4: MAM climatology (mean accumulated precipitation) from 1990-2020 in HighResMIP models. The study
region is outlined in red.
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Figure AS: Seasonal cycle of mean precipitation over the study region from 1990-2020 in HighResMIP models
(black line) vs gridded observational products: CPC (blue); CHIRPS (green); MSWEP (orange); TAMSAT (red).
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Figure A6: MAM climatology (mean accumulated precipitation) from 1990-2020 in CORDEX runs.
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Figure A7: Seasonal cycle of mean precipitation over the study region from 1990-2020 in CORDEX runs (coloured
lines) vs CHIRPS (black dashed line).
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Figure A8: MAM climatology (mean accumulated precipitation per day) from 1990-2020 in CMIP6 models. The
study region is outlined in red.



ACCESS-CM2 ACCESS-ESM1-5 CMCC-ESM2 CNRM-CM6-1-HR CNRM-CM6-1

10 . 1 1 :
| M _ _ M _ M _ M
0 T T E T T L T L T T L T T
CanESM5 EC-Earth3-Veg-LR EC-Earth3-Veg EC-Earth3 FGOALS-g3
101 . . . :
| _ _ M _ M _ M
0 T T a T T L T L T T L T T
INM-CM4-8 INM-CM5-0 IPSL-CMBA-LR MIROC6 MPI-ESM1-2-HR
101 . . . :
| 7 M 7 M 7 w 7 M
0_ T T 1 T T L T L T T L T T
MPI-ESM1-2-LR MRI-ESM2-0 NorESM2-LM NorESM2-MM TaiESM1
10 8 1 1 1
0 T T E T T L T T L T T L T T
0 200 0 200 0 200 0 200 0 200

Figure A9: Seasonal cycle of mean precipitation over the study region from 1990-2020 in HighResMIP models
(black line) vs gridded observational products: CPC (blue); CHIRPS (green); MSWEP (orange);, TAMSAT (red).
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Figure A10: Synthesis of (a) probability ratios and (b) relative intensity changes of RX30day over the study region
in the 2024 climate and a 1.2°C cooler climate, for twenty CMIP6 model runs regardless of the evaluation results.
Details of how to interpret the synthesis plots are given in the text.



